
Enhancing Learning Algorithms via Sublinear-Time Methods
by

Arsen Vasilyan
B.S., Massachusetts Institute of Technology (2019)
M.S., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Arsen Vasilyan All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright, including to
reproduce, preserve, distribute and publicly display copies of the thesis, or

release the thesis under an open-access license.

Authored by Arsen Vasilyan
Department of Electrical Engineering and Computer Science
March 20, 2024

Certified by Jonathan Kelner
Professor of Applied Mathematics
Thesis Supervisor

Certified by Ronitt Rubinfeld
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Enhancing Learning Algorithms via Sublinear-Time Methods
by

Arsen Vasilyan

Submitted to the Department of Electrical Engineering and Computer Science
on March 20, 2024, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Our society increasingly relies on algorithms and data analysis to make critical decisions. Yet,
almost all work in the theory of supervised learning has long relied on the following two assump-
tions:

1. Distributional assumptions: data satisfies conditions such as Gaussianity or uniformity.
2. No distribution shift: data distribution does not change between training and deployment.

While natural and often correct, these assumptions oftentimes do not hold. Yet, these assumptions
are routinely made for giving theoretical guarantees for supervised learning algorithms. These
guarantees can become null and void, should one of these algorithms be used in a setting where
these assumptions do not hold. Overall, if critical decisions rely on theoretical reliability guaran-
tees, incorrect assumptions can result in catastrophic failure.

The first part of this thesis shows how to mitigate this dependence. We introduce and develop
testers which can alert a user if some assumptions are not satisfied. Leveraging insights from the
area of property testing, the first part of this thesis constructs such testers for a number of well-
studied function classes, addressing distributional assumptions and distribution shift.

The second part of this thesis shows how insights from sublinear-time algorithms can also
be used to make learning algorithms more runtime-efficient. We show that sublinear-time local
algorithms, capable of deriving partial solutions by examining only a fraction of the input, can be
used as a powerful primitive to resolve problems in learning theory.

Thesis Supervisor: Jonathan Kelner
Title: Professor of Applied Mathematics

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor of Electrical Engineering and Computer Science

2

Acknowledgments

I am profoundly grateful to my PhD advisors, Ronitt Rubinfeld and Jonathan Kelner, for their
unwavering support, guidance, and mentorship throughout my doctoral journey. They not only
imparted invaluable knowledge but also instilled in me the skills necessary to navigate the com-
plexities of research. From selecting research problems to presenting my work, their wisdom has
been instrumental in shaping my academic path. I am especially grateful to Ronitt, with whom I
have had the privilege of working since my undergraduate years.

I extend my sincere appreciation to Sam Hopkins for his invaluable contributions as a member
of my thesis committee, offering invaluable insights and guidance.

I am indebted to Adam Klivans for his exceptional mentorship and collaboration, which signif-
icantly enriched the research presented in this thesis.

My heartfelt thanks go to my esteemed peers (in alphabetical order) Aravind Gollakota, Jane
Lange, Konstantinos Stavropoulos for their significant contributions to the work discussed in this
thesis. Furthermore, I learned a lot from all my other collaborators who worked with me on various
research projects outside of this thesis. Listed in alphabetical order, their names are Sepehr Assadi,
Gautam Chandrasekaran, Ilan Cohen, Talya Eden, Alon Eden, Khashayar Gatmiry, Surbhi Goel,
Tim Hsieh, Esty Kelman, Pravesh Kothari, Frederic Koehler, Vasilis Kontonis, Ephraim Linder,
Aleksander Madry Jeet Mohapatra, Ted Pyne, Sofya Raskhodnikova, Dhruv Rohatgi, Abhishek
Shetty, Aaron Sidford, Jakub Tetek, Kevin Tian, Shih-Yu Wang, Ning Xie and Jeff Xu.

I extend my appreciation to my housemates Rahul Ilango and Shyam Narayanan, as well as
my officemates Agnes Villanyi, Hannah Lawrence, and Sabrina Drammis, for their support and
camaraderie. I am also grateful to the entire theory group at MIT for their stimulating environment
and friendship. Special thanks to Anders Aamand, Shayan Akmal, Maryam Aliakbarpour, Ainesh
Bakshi, Kiril Bangachev, Shankha Biswas, Matthew Brennan, Leo de Castro, Justin Chen, Sitan
Chen, Lily Chung, Kristian Georgiev, Noah Golowich, Brice Huang, Vardis Kandiros, Surya Math-
ialagan, Klara Mundilova, Sandeep Silwal, Stefan Tiegel, Neekon Vafa, Nicole Wein, Yinzhan Xu,
Rachel Zhang, and others for their contributions and support during various events and gatherings.

I owe a debt of gratitude to my friends outside of academia for their unwavering support, enrich-
ing conversations and eye-opening experiences. Special thanks to Janak Agarwal, Anuj Apte, John
Friedman, Charles Fu, Chris Hillenbrand, Vardges Mambreyan, Tugsuu Manlaibaatar, Alexan-
dra Martirosyan, Gevorg Martirosyan, Marta Maznin, Joey Muller, Jeet Mohapatra, Khachatur
Nazaryan, Alex Patton, Debaditya Pramanik, James Rowan, Tomohiro Soejima, Vienna Thomas,
Rona Wang, Henry Wu and others for their friendship and encouragement.

Last but not least, I am profoundly grateful to my family for their unconditional love, unwaver-
ing support, and encouragement throughout this journey. Without their support, this thesis would
not have been possible. I extend my heartfelt thanks to my parents, Ashot Vasilyan and Irina Boy-
akhchyan, and to my grandparents, Efrem Boyakhchyan, Galina Boyakhchyan, Anahit Vasilyan
and Moris Vasilyan for their invaluable role in shaping my life and academic pursuits.

3

Introduction

This thesis explores methodologies for improving learning algorithms, focusing on reliability
and efficiency. The first part of this thesis concentrates on testing the assumptions that underpin
learning algorithms. By drawing upon insights from sublinear-time distribution-testing literature,
this section presents methods for testing these assumptions, enhancing the reliability of learning
processes.

The second portion of the thesis delves into the realm of monotone function learning, aiming to
address longstanding gaps in our understanding. Leveraging sublinear-time local algorithms, the
second part of this thesis uncovers novel insights into this domain. We show that sublinear-time
local algorithms, capable of deriving partial solutions by examining only a fraction of the input,
can be used as a powerful primitive to resolve problems in learning theory.

Overall, this thesis shows that insights from sublinear-time algorithms can help improve learn-
ing algorithms by making them faster and more reliable.

Part 1: Ensuring Reliability of Learning Algorithms.

Our society increasingly relies on algorithms and data analysis to make critical decisions. Yet,
almost all work in theory of supervised learning has long relied on the following types of assump-
tions:

1. Distributional assumptions: data satisfies conditions such as Gaussianity or uniformity
over d-bit strings.

2. No distribution shift: when the classifier is deployed, data comes from the same distribution
as the training examples.

While natural and often correct, these assumptions oftentimes do not hold. Yet, these assumptions
are routinely made for giving theoretical guarantees for supervised learning algorithms. As a result,
these guarantees can become null and void, should one of these algorithms be used in a setting
where these assumptions are incorrect. Overall, if critical decisions rely on theoretical reliability
guarantees, incorrect assumptions can result in catastrophic failure.

While, as it was known, completely eliminating the dependence on assumptions is provably
impossible, the first part of this thesis shows how to mitigate this dependence. We introduce and
develop testers which can alert the user if some assumptions are not satisfied. Conversely, if the

4

tester finds a specific dataset to be satisfactory, then a user can be confident in the guarantee given
by the learning algorithm. Thus, having such a tester enables a user to make sure that a learning
algorithm is safe to apply to a specific dataset.

Leveraging insights from the area of sublinear-time distribution testing, the first part of this the-
sis constructs such testers for a number of well-studied function classes, addressing distributional
assumptions and distribution shift.

Testing distributional assumptions: In Chapters 1 and 2 we focus on the distributional as-
sumptions made by agnostic learning algorithms. Agnostic learning is a well-studied setting in
learning theory, in which the learning algorithm should find a classifier that performs as well as
the best classifier in a given hypothesis class F . Notably, an agnostic learning algorithm is robust
to an adversary corrupting a subset of labels in the data. Almost all algorithms in this area rely on
distributional assumptions on the high-dimensional data these algorithms receive, such as Gaus-
sianity or uniformity over d-bit binary strings [KKMS08, OS06, BOW08, KOS08, GS10, Kan10,
Wim10, DHK+10, CKKL12, ABL14, FK15, BCO+15, DKK+21]. (Note that such distributional
assumptions are unavoidable due to known hardness results such as [GR06, FGKP06, Dan16].)

Reliance on distributional assumptions comes with risks. Reliability guarantees become null
and void, should one of these algorithms be accidentally misapplied to a setting where these as-
sumptions do not hold. For example, this could lead to an adversary making the learning algorithm
fail spectacularly by corrupting only a tiny fraction of data labels.

Motivated by this issue, in Chapter 1, which is based on [RV23], we introduce the tester-
learner framework for agnostic learning. In our new framework, we require that an agnostic
learning algorithm comes together with a tester, which can alert a user if some assumptions are
not satisfied. Conversely, if the tester finds a specific dataset to be satisfactory, then a user can be
confident in the guarantee given by the learning algorithm. Thus, having such a tester enables a
user to make sure that the agnostic learning algorithm is safe to apply to a specific dataset.

Although our work draws heavily on the ideas from traditional sublinear-time distribution test-
ing, off-the-shelf distribution testing algorithms are too slow for our purposes. The reason is that
previous testers for properties of distributions such as uniformity or Gaussianity have run-times
that are exponential in the dimension, which is dramatically slower than many agnostic learning
algorithms. These exponential run-times are provably necessary for testers that are defined with
respect to standard distance measures such as total variation distance or earth-mover distance.
See text [Can22] for a survey of such testers. Our tester-learner framework sidesteps these lower
bounds as it does not require us to check that the distribution of the data is close to uniform or
Gaussian with respect to these standard distance measures. Instead, our framework only requires
us to make sure the distribution is sufficiently similar to the Gaussian or the uniform distribution
for agnostic learning algorithms to be successful.

In Chapter 1 we show that for the class of linear classifiers, one can indeed obtain a tester-
learner pair with combined run-time of the same order as best distribution-specific agnostic learn-
ing algorithms. Note that Follow-up work by Gollakota, Klivans and Kothari improved our run-
time and showed that fast tester-learner pairs exist for a wider variety of function classes, including

5

AC0 circuits and intersections of linear classifiers [GKK23].
In Chapter 2, which is based on [GKSV24] and [GKSV23], we further study tester-learner

pairs for linear classifiers that run in polynomial time in all parameters1 (also see the work
[DKK+23]). In the distribution-specific setting, such an algorithm was first given by the celebrated
work of [ABL14]. We complement [ABL14] by giving a tester-learner pair for this problem. To
achieve this, we expand our testing toolkit by going beyond the moment-matching approach used
in Chapter 1 and [GKK23], which checks that low-degree polynomials cannot distinguish the data
distribution from the assumed distribution. Instead, in Chapter 2 we introduce direction-aware
testers that partition the d-dimensional space into a series of regions along a vector obtained by
running the algorithm of [DKTZ20b], which is based on non-convex stochastic gradient descent.
Then we perform the moment-matching test in each of these regions separately (instead of in the
whole of d-dimensional space at once). This approach yields a tester-learner pair with combined
run-time polynomial in all parameters.

Another novel property possessed by the tester-learner pair in Chapter 2 is its ability to han-
dle a whole family of assumptions: the family of strongly log-concave distributions (in contrast,
Chapter 1 only handles specific distributions such as the standard Gaussian). Furthermore, the
tester-learner pair we give in Chapter 2 satisfies what we call the universality property: the testing
algorithm is guaranteed to accept every single distribution in the family of allowed distributions
(without knowing in advance which particular one of these distributions it will face). A crucial
new ingredient for our testing algorithm is the use of a sum-of-squares relaxation.

Addressing distribution shift. In Chapter 3, which is based on [KSV23] we study how to miti-
gate the effects of distribution shift. In learning theory, it is commonly assumed that the training
dataset comes from the same distribution as the data we see during deployment. Yet, due to a
distribution shift, this assumption might not hold, which can lead to incorrect predictions. Dealing
with distribution shift is a big challenge in machine learning. For example, classifiers trained on
data from one hospital often fail to generalize to other hospitals [ZBL+18, WOD+21, TCK+22].
Inspired by our previous work in testing assumptions, in Chapter 3 we develop a new framework
called Testable Learning with Distribution Shift (TDS learning) for addressing this issue. The
goal of our work is developing learning algorithms that allow their user to make sure that the
performance of a learning algorithm is not deteriorating due to a distribution shift.

In Chapter 3, we consider the following setting. We are given a training dataset S1, which
for example might contain data from the Gaussian distribution which are labelled by an unknown
function f in the function class. We are also given a new dataset S2 of unlabelled data points
which we need to classify. The concern is that even if a learning algorithm produces a classifier
that performs very well on the distribution from which S1 is drawn, it might perform terribly on S2

due to a distribution shift.
1To achieve such run-times, we target the semi-agnostic guarantee, as is also done in [ABL14]. This guarantee is

slightly less strict than the agnostic learning guarantee, yet it still provides robustness to adversarial label corruptions.
(Fully agnostic learning of linear classifiers is believed to not be achievable in time polynomial in all parameters. This
is due to statistical query lower bounds, as well as reductions from cryptographic assumptions.)

6

Whenever distribution shift makes it unsafe to use the classifier given by the learning algorithm
on the unlabeled dataset S2, the TDS learning framework requires the learning algorithm to alert
the user. In contrast, if no distribution shift has taken place, then the TDS learning framework
requires the learning algorithm not to raise such an alert. In this case, the user can be confident that
the classifier given by the learning algorithm is indeed safe to deploy on the dataset S2.

Although domain-adaptation has been studied previously, most previous work such as [BDBCP06,
BDBC+10, MMR09] bounds the error on S2 in terms of some notion of distance between the dis-
tributions giving rise to S1 and S2. These distances seem computationally difficult to evaluate, as
they involve enumeration of all elements of the function class. (Additionally, off-the-shelf distri-
bution testers have run-times much higher than most learning algorithms. See text [Can22] for a
survey of such testers.)

In Chapter 3 we give TDS learning algorithms that are not only sample-efficient but also com-
putationally efficient. We handle a number of high-dimensional function classes, including lin-
ear classifiers, intersections of linear classifiers, decision trees and low-depth formulas. Our TDS
learning algorithms work when training dataset S1 comes from the Gaussian distribution or the uni-
form distribution on n-bit strings. To accomplish this, we develop a novel method based on show-
ing that functions in a given function class can be sandwiched between pairs of low degree polyno-
mials that are close in L2-distance. We prove the existence of such pairs of L2-sandwiching poly-
nomials for a wide range of function classes, by building on techniques from pseudorandomess
used in [DGJ+10] and [GOWZ10]. We then show that the existence of these L2-sandwiching poly-
nomials can be used to achieve efficient TDS-learning for the aforementioned function classes by
introducing our Transfer Lemma, which allows us to ensure a good performance on the set S2 by
checking that the low-degree moments of the set S2 approximately match those of S1.

Furthermore, for TDS learning of linear classifiers under the Gaussian distribution, we give an
algorithm that does provably better than any algorithm based on L2-sandwiching polynomials. To
accomplish this, we combine the moment-matching approach with a method inspired by literature
on active learning. Additionally, we extend the notion of TDS learning into the agnostic learning
setting. By leveraging insights from our work on tester-learner pairs [GKSV23], we give agnostic
TDS learning algorithms for homogeneous linear classifiers that runs in polynomial time in all
parameters.

Part II: Closing Computational-to-Statistical Gaps via Sublinear-Time Cor-
rection.

For numerous problems in learning theory and high-dimensional statistics, there are computational-
to-statistical gaps in our understanding. In other words, for such problems there are statistically
efficient algorithms with low data consumption, and yet no computationally efficient algorithms
are known. In Chapters 4 and 5 we give explore a new algorithmic method for addressing these
gaps, which is based on sublinear-time Local Computation Algorithms.

Prior to our work in Chapters 4 and 5, a longstanding computational-to-statistical gap existed
for many problems related to high-dimensional monotone functions. A binary-valued function

7

on d-bit strings is called monotone if increasing the value of one of the input bits from 0 to 1 can
only cause the value of the function to increase. In Chapters 4 and 5, we consider the following
fundamental problems about monotone functions:

1. Proper2 learning: Given uniform samples labelled by a monotone function f , find a mono-
tone function that approximates3 f up to error ϵ.

2. Proper agnostic learning: Given uniform samples labelled by an arbitrary function f , find
a monotone function that approximates f best among all monotone functions (up to error ϵ).

3. Distance approximation: Given uniform samples labelled by an arbitrary function f ,
approximate the distance of f to the monotone function closest to f (up to error ϵ).

Since [BT96], it was known that all the problems above can be solved using only 2Õ(
√
d/ϵ) samples,

yet prior to our work no known algorithms for any of these tasks ran in time 2o(d). This was true
even for algorithms that could additionally query the function f on arbitrary inputs of their choice.

In Chapters 4 and 5, we close this computational-to-statistical gap by giving algorithms for
each of the problems above that run in time 2Õ(

√
d/ϵ). One of our techniques is a novel use of

sublinear-time Local Computation Algorithms (LCAs) for the maximal matching problem on
graphs.

In Chapter 4, which is based on [LRV22], we leverage these techniques in order to obtain an
efficient monotonicity corrector that transforms a given binary-valued function into a monotone
function by changing as few of its values as possible. An important property of our corrector is that
it is local, i.e. the value of the corrected function on a specific input x is deduced by only evaluating
the original function on a relatively small number of elements in the neighborhood of x. Applying
our local corrector to the non-monotone hypothesis produced by the algorithm of [BT96], we give
a proper learning algorithm for monotone functions that runs in time 2Õ(

√
d/ϵ). Although local

monotonicity correctors were studied previously [ACSL08, ACSL07, SS10a, CGR13, AJMR14],
all existing correctors ran in time 2Ω(d), which is too large to yield improved algorithms for proper
learning of monotone functions.

Chapter 5, which is based on [LV23], improves on Chapter 4 and obtains a run-time of 2Õ(
√
d/ϵ)

also for the task of proper agnostic learning of monotone functions, as well as the task of approx-
imating the distance of a function to monotone. The algorithm for proper agnostic learning of
monotone functions proceeds in two stages.

The first stage runs a low-degree polynomial L1-regression, while also satisfying a number
of constraints that make sure that a polynomial is close to a monotone function in L1 norm. Al-
though the number of these additional constraints we impose is exponentially large, in Chapter
5 we make sure they are all satisfied simultaneously. We do this by giving a separation oracle
that, given a polynomial violating one of these constraints, provides a linear certificate that one of

2The word “proper” is used to distinguish this setting from the so-called improper learning setting, in which the
learning algorithm is allowed to output any hypothesis (not necessarily one in the hypothesis class).

3In this section, we define the distance between two functions as the fraction of the elements in their domain on
which the two functions disagree.

8

these constraints is violated. This allows us to leverage the Ellipsoid algorithm in order to keep
all these constraints satisfied simultaneously, because the Ellipsoid algorithm can solve systems of
exponentially many constraints, as long as a separation oracle for these constraints is provided.

In Chapter 5, we implement the separation oracle by building on the LCA-based techniques of
Chapter 4. To do this, we first show that a high-weight matchingM of monotonicity-violating pairs
of elements can certify that a given polynomial P is far from any real-valued monotone function.
We then show that such matching M certifies that not only P is far from any real-valued monotone
function, but also that each polynomial beyond a certain hyperplane in the space of polynomials
is far from any real-valued monotone function. Finding such a hyperplane yields exactly a linear
certificate that our separation oracle needs to output, and we show how to find it in time 2Õ(

√
d/ϵ).

Note that this run-time is dramatically faster than even writing our the whole matching M , as it
typically has a size as large as 2Ω(d). We accomplish this by first employing LCAs to obtain local
access to such a matching M . Having local access to this matching M , we are able to accurately
“learn” the hyperplane in the space of polynomials beyond which it certifies large distance to
monotonicity via accessing the matching M on 2Õ(

√
d/ϵ) random d-bit strings. We show that this

information suffices to estimate this hyperplane accurately.
Once the Ellipsoid algorithm terminates, our algorithm in Chapter 5 obtains a polynomial P

that both fits the target function well, and is also close to monotone in the L1 norm. The second
stage of our algorithm transforms this polynomial P into a monotone function that is close to P . In
order to achieve this, we extend the monotonicity corrector of Chapter 4 to work with general real-
valued functions (the original monotonicity corrector of Chapter 4 only works with binary-valued
functions).

9

Contents

I Ensuring Reliability of Learning Algorithms. 13

1 Testing distributional assumptions of learning algorithms. 14
1.1 Chapter Overview. 14
1.2 Preliminaries. 24
1.3 An efficient tester-learner pair for learning halfspaces. 25
1.4 Technical preliminaries. 27
1.5 Proving the two main lemmas (Lemma 1, and Lemma 2) via polynomial approxi-

mation theory. 28
1.6 Proof of Main Theorem via two main lemmas. 34
1.7 Tester-learner pairs for agnostically learning halfspaces under the uniform distri-

bution over Boolean cube. 42
1.8 Lower bounds on testable agnostic learning complexity. 49
1.9 Miscellaneous proofs. 61

2 Tester-Learners for Halfspaces: Universal Algorithms. 67
2.1 Chapter Overview. 67
2.2 Preliminaries . 71
2.3 Universal Testers . 73
2.4 Universal and Efficient Tester-Learners for Halfspaces 76
2.5 Technical Lemmas . 79
2.6 Proofs from Section 2.3 . 85
2.7 Proofs from Section 2.4 . 89

3 Testable Learning with Distribution Shift 97
3.1 Chapter Overview. 97
3.2 TDS Learning of Homogeneous Halfspaces . 103
3.3 TDS Learners for General Halfspaces . 105
3.4 TDS Learning through Moment Matching . 107

10

3.5 Lower Bounds for Monotone Functions and Convex Sets in Realizable Setting . . . 108
3.6 Notation and Basic Definitions . 109
3.7 TDS Learning of Homogeneous Halfspaces . 111
3.8 Realizable TDS Learning . 113
3.9 TDS Learning Through Moment Matching . 128
3.10 Lower Bounds . 137
3.11 Sample Complexity of TDS Learning . 145
3.12 PQ Learning and Distribution-Free TDS Learning 147
3.13 Amplifying success probability . 149
3.14 Auxiliary Propositions . 150

II Closing Computational-to-Statistical Gaps via Sublinear-Time Cor-
rection 155

4 Properly learning monotone functions via local correction 156
4.1 Chapter Overview. 156
4.2 Preliminaries . 159
4.3 Main result and consequences . 162
4.4 The LCA for poset sorting . 165
4.5 Standard proofs . 171

5 Agnostic proper learning of monotone functions: beyond the black-box correction
barrier 176
5.1 Chapter Overview. 176
5.2 Preliminaries . 182
5.3 Our algorithms . 186
5.4 Analysis of the local corrector . 186
5.5 Analysis of the matching algorithm . 193
5.6 Analysis of the agnostic learning algorithm . 195

11

List of Figures

2-1 The function ℓσ used to smoothly approximate the ramp. 85
2-2 The Gaussian mass in each of the regions labelled A1 and A2 is proportional to the

corresponding term appearing in the statement of Proposition 25. 90

5-1 Control-flow diagram of the semiagnostic algorithm of Chapter 4 179
5-2 Control-flow diagram of the fully agnostic learning algorithm presented in this

chapter (the final rounding step is omitted). 180

12

Part I

Ensuring Reliability of Learning
Algorithms.

13

Chapter 1

Testing distributional assumptions of
learning algorithms.

1.1 Chapter Overview.

1.1.1 Motivation.

Suppose one wants to learn from independently distributed example-label pairs, but some un-
known fraction of labels are corrupted by an adversary. The well-studied field of agnostic learning
seeks to develop learning algorithms that are robust to such corruptions. (See [BLMT22] for more
on how exactly agnostic learning algorithms yield algorithms that are resilient to adversarial noise
in labels.) Agnostic learning can be notoriously harder than standard learning (see for example
[HJLT96, GR06, FGKP06, Dan16]). Nevertheless, there are many important high-dimensional
function classes that do have fast agnostic learning algorithms, including halfspaces, convex sets
and monotone Boolean functions. However, these learning algorithms make strong assumptions
about the underlying distribution on examples , such as Gaussianity or uniformity over {0, 1}d.

Thus, to be confident in such a learning algorithm one needs to be confident in the distributional
assumption. In some cases, users can attain confidence in their distributional assumptions by
creating their own set of examples which conform to the distribution, and querying labels for these
examples. Yet, this approach requires query access, which is often unavailable. Is there a way to
ascertain that the examples are indeed coming from a distribution for which the learning algorithm
will give a robust answer?

We propose to systematically study the design of tester-learner pairs (A, T), such that tester
T tests the distributional assumptions of agnostic learner A. In other words, the tester-learner
pair is to be designed such that if the distribution on examples in the data pass the tester, then one
can safely use the learner on the data. By considering the most basic requirements that such a pair
ought to satisfy, we propose a new framework that makes the following end-to-end requirements
on a tester-learner pair (A, T):

• Soundness: For any example-label distribution, it should be unlikely that simultaneously

14

(i) the tester T accepts but (ii) the learner A outputs something not satisfying the agnostic
learning guarantee.

• Completeness: If the distribution on examples conforms to the distributional assumption,
tester T will likely accept.

• The performance of the tester-learner pair is judged by the combined run-time of A and T .

See Section 1.2.2 for the fully formal definition and see Subsection 1.1.3 for more comments.
We emphasize that assumptions on the distribution of examples are in fact made in a very

large number of works on agnostic learning. Here is an incomplete list of such papers that
only scratches the surface: [KKMS08, OS06, BOW08, KOS08, GS10, Kan10, Wim10, HKM10,
DHK+10, CKKL12, ABL14, DSFT+14, FV15, FK15, BCO+15, CGG+17, FKV17, DKK+21].
The reason for this ubiquity of distributional assumptions in high-dimensional agnostic learning
is that with no assumption at all on the distribution the task of agnostic learning is usually in-
tractable1. Hence, it is important to understand to what extent these distributional assumptions can
be tested.

Perhaps surprisingly, in spite of how natural this definition is, nothing was previously known
on how efficiently it can be achieved for various well-studied problems. The gamut of open pos-
sibilities included the most optimistic one: that for all these problems one can test the assumption
with very small overhead relative to the existing agnostic learning algorithms. It also included
the most pessimistic one: that for all these problems one can test the assumption only at a very
steep additional cost in terms of run-time. We note that such steep additional cost would indeed
be payed if one were to use existing identity testers of d-dimensional distributions, as these testers
have run-times of 2Ω(d) (see below for more information on this).

We commence the charting of the landscape of these possibilities. This run-time qualitatively
matches the run-time of dÕ(1/ϵ2) [KKMS08, DGJ+10] achieved by the best algorithm2 and the
statistical query lower bound of dΩ(1/ϵ2) by [GGK20, DKZ20, DKPZ21]. We also go beyond
spherically-symmetric distributions, and give a tester-learner pair for halfspaces under the uniform
distribution on {0, 1}d with combined run-time of dÕ(1/ϵ4). Here also, the run-time qualitatively
matches the run-time of dÕ(1/ϵ2) [KKMS08, DGJ+10] achieved by the best algorithm. Additionally,
we remark that positive results in our framework extend to function classes beyond halfspaces and,
as a proof of concept, we give a simple tester-learner pair for agnostically learning decision lists3

1For example (i) The task of learning indicators of convex sets over Rd cannot be achieved with finite number
of samples if nothing is assumed about the distribution. If the distribution is assumed to be Gaussian, this task can
be achieved with run-time of dÕ(

√
d/ϵ4) [KOS08]. (ii) If one is unwilling to make any distributional assumption,

no agnostic learning algorithm for halfspaces with run-time of 2o(d) is known despite decades of research (also see
[GR06, FGKP06, Dan16] for some known hardness results). However, as we mentioned if the examples are distributed
according to the standard Gaussian, a dramatically faster run-time of dÕ(1/ϵ2) is achievable [KKMS08, DGJ+10].

2In this chapter we focus on agnostic learning algorithms achieving error opt + ϵ. See Chapter 2 for the study of
tester-learner pairs for the weaker guarantee of O(opt)+ϵ, which is sometimes referred to as “semi-agnostic” learning.

3For this example, a decision list is a special case of a decision tree corresponding to a path. More formally,
for some ordering of the variables xπ(1), . . . , xπ(d), values v1, . . . , vn and bits b1, . . . , bn, a decision list does the
following: For i = 1 to d, if xπ(i) = bπ(i) output vπ(i), else continue. A more general definition is given in [Riv87].

15

under uniform distribution on {0, 1}d (see Section 1.9.6). Also see [HJLT96] for some intractability
results on distribution-free learning of decision lists.

On the other hand, for some other natural problems, we show that the most pessimistic scenario
holds and the additional requirement of testing the distributional assumption comes at a steep price
in terms of run-time. Specifically:

• A well-known algorithm of [KOS08] agnostically learns convex sets under the Gaussian
distribution with a run-time of dÕ(

√
d/ϵ4). We show that if a tester T tests the distributional

assumption of this algorithm, then T has run-time of 2Ω(d). More generally, any tester-
learner pair for this task requires 2Ω(d) run-time combined.

• A well-known algorithm of [BT96, KKMS08] agnostically learns monotone Boolean func-

tions under uniform distribution over {0, 1}d with a run-time of 2Õ
(√

d
ϵ2

)
. We show that if a

tester T tests the distributional assumption of this algorithm, then T has run-time of 2Ω(d).
Again, any tester-learner pair for this task requires 2Ω(d) run-time combined.

We emphasize that these lower bounds exhibit natural problems where there is a dramatic gap be-
tween standard agnostic learning run-time and the run-time of the best tester-learner pair. There-
fore, there is provably no general method that allows one to automatically convert standard agnostic
learning algorithms into tester-learner pairs with low run-time overhead.

Additionally, lower bounds for tester-learner pairs can imply lower bounds for standard ag-
nostic learning: Specifically, our lower bounds imply that agnostic learning of monotone functions
under distributions 1

2d0.99
-close4 to d0.99-wise independent distributions requires 2Ω(d) run-time. The

reason is that by [OZ18, AAK+07, AGM03] one can test d0.99-wise independence up to error 1

2d
0.99

in time 2Õ(d0.99), and therefore the existence of such an algorithm would contradict our general
lower bound for tester-learner pairs. As there are 2Õ(

√
d/ϵ2) time learners for monotone functions

over the uniform distribution [BT96, KKMS08], this lower bound highlights the sensitivity of ag-
nostic learners to the assumption on the input distribution.

Distribution testing perspective. Existing work on identity testing of d-dimensional distribu-
tions has focused on testing with respect to very strict distance measures (such as TV distance,
earth-mover distance and other distance measures coming from probability theory). On one hand
this yields strong general-purpose guarantees on distributions accepted by the tester – it is hard
to think of a situation where closeness in TV distance is unsatisfactory. On the other hand, in d
dimensions this leads to run-times of 2Ω(d). As a concrete example, distinguishing the uniform
distribution over {0, 1}d from a distribution that is ϵ-far from it in total variation distance requires
a run-time of Θ

(
1
ϵ2
2d/2

)
(see text [Can22]).

Yet, run-times of 2Ω(d) can be prohibitive. Indeed, as we explained above, the theory of d-
dimensional agnostic learning aims at developing algorithms with run-times of 2o(d) or even dOϵ(1).

4In total variation distance.

16

If one were to combine these algorithms with a 2Ω(d)-run-time distribution tester, the total run-time
would rise precipitously.

From the distribution testing perspective, this chapter studies application-targeted testers that,
in favor of much faster run-time, forgo the general-purpose guarantees provided by these strict
distance measures. The application domain which this chapter considers is the testing of distri-
butional assumptions made by agnostic learning algorithms. Here, the application-targeted testers
are developed with a view towards special-purpose guarantees sufficient to ensure that the learning
algorithms are still robust. For some problems in this domain – this chapter shows – the use of
general-purpose testers can indeed be circumvented, with a dramatic gain in run-time.

In general, surprisingly little is known about such application-targeted testers and we hope
more application-targeted distribution testers can be developed for other domains.

Brief comparison with distribution-free agnostic learning. Recall that an agnostic learning
algorithm is distribution-free if it succeeds regardless of the distribution on examples. De-
signing such algorithms has proven to be intractable for many function classes (see for example
[HJLT96, GR06, FGKP06, Dan16]). This intractability has prompted the study of agnostic learn-
ing algorithms under distributional assumptions.

The framework we introduce in this chapter is intermediate between distribution-free agnostic
learning and agnostic learning under a distributional assumption. While the learning algorithm is
not required to satisfy the agnostic learning guarantee under every single distribution on example,
the testing algorithm needs to alerts us whenever the learning algorithm does fail to satisfy this
guarantee.

Incidentally, when using a tester-learner pair, whenever the testing algorithm rejects, the user
can choose to then run a slow distribution-free agnostic learning algorithm. Overall, this strategy
yields a learning algorithm that always satisfies the agnostic guarantee, and additionally runs fast
whenever the distributional assumption does hold, thereby adapting to the distribution on examples.

The followup work of [GKK23]. A follow up work [GKK23] builds on an earlier version of
this chapter, which had been made available to them. [GKK23] develops novel techniques for the
design and analysis of tester-learner pairs that leverage connections with the notion of fooling a
function class from the field of pseudorandomness. This allows [GKK23] to

• Give tester-learner pairs for more general function classes, such as intersections of halfs-
paces.

• Handle more general classes of distributional assumptions, such as strictly subexponential
distributions in Rd and uniform over {0, 1}d.

• Present a new connection between the notion of tester-learner pairs and Rademacher com-
plexity.

• Improve on our run-time for tester-learner pairs for halfspaces under the Gaussian distribu-
tion on Rd. Specifically, they give a bound of dÕ(1/ϵ2) which improves upon our bound

17

of dÕ(1/ϵ4). Their tighter bound also matches the known statistical query lower bounds
[GGK20, DKZ20, DKPZ21].

We would like to note that Theorem 4 (tester-learner pairs for halfspaces under the uniform
distribution on {0, 1}d) is concurrent work with [GKK23] (they give a faster run-time of dÕ(1/ϵ2)

for this problem and also give more general results as explained above). The earlier version of
this chapter (which they build upon) already contained the other results presented in our current
version, i.e. (i) the definition of tester-learner pairs (ii) the tester learner pair for half-spaces under
the Gaussian distribution with run-time dÕ(1/ϵ4) (Theorem 2) (iii) the intractability results for tester-
learner pairs in Theorems 5 and 6.

Further direct follow-up is presented in Chapter 2.

1.1.2 Our techniques.

Function class Halfspaces Halfspaces

Distributional assumption Standard Gaussian in Rd Uniform on {0, 1}d

Standard agnostic learning
run-time from literature

dÕ(1/ϵ2)

[KKMS08, DGJ+10]
dÕ(1/ϵ2)

[KKMS08, DGJ+10]

Standard agnostic learning in-
tractability from literature

dΩ(1/ϵ2) statistical queries
[GGK20, DKZ20, DKPZ21]

We are not aware
of published intractability

results in this setting.

Examples needed for testing
assumption in TV distance

infinite
Θ
(

1
ϵ2
2d/2

)
(see text [Can22])

The run-time of our tester-
learner pair

dÕ(1/ϵ
4) dÕ(1/ϵ

4)

Table 1.1: Summary of our algorithms and relevant previous work.

We summarize the contributions in this chapter and relevant background in Table 1.1 on page 18
and Table 1.2 on page 19.

Tester-learner pair for agnostically learning halfspaces under Gaussian distribution We
first give an overview of our tester-learner pair (A, T) with combined run-time of dÕ(1/ϵ4) for the
class of half-spaces with respect to standard Gaussian distribution. We also discuss the techniques
we use to analyze it. See Sections 1.3, 1.5 and 1.6 for complete details.

A natural first approach would be to try to take advantage of the literature on testing and
learning distributions. However, almost all results we are aware of on testing and learning high-

18

Function class Convex sets Monotone functions

Distributional assumption Standard Gaussian in Rd Uniform on {0, 1}d

Standard agnostic learning
run-time from literature

dÕ(
√
d/ϵ4)

[KOS08]
2Õ(

√
d/ϵ2)

[BT96, KKMS08]

Standard agnostic learning in-
tractability from literature

dΩ(
√
d)

[KOS08]
2Ω̃(

√
d)

[BCO+15]

Examples needed for testing
assumption in TV distance

infinite
Θ
(

1
ϵ2
2d/2

)
(see text [Can22])

Our lower bound for com-
bined run-time of a tester-
learner pair

2Ω(d) 2Ω(d)

Table 1.2: Summary of our intractability results and relevant previous work.

dimensional distributions (without assuming the distribution already belongs to some highly re-
stricted family as in [CM13]) require a number of samples that is exponentially large in the di-
mension. It follows from well-known techniques that Gaussianity over an infinite domain cannot
be tested with respect to total variation distance in finite samples. Potentially, one could obtain
a tester-learner pair for Gaussianity with respect to the earth-mover distance via the tester5 of
[BNNR11], yielding a tester of run-time 2Õ(d). However one can see that, in earth-mover distance,
no significantly better (i.e. 2o(d)) bound can be obtained6. Such enormous run-times far exceed the
run-times that can be achieved for agnostically learning halfspaces.

Previously it was known that half-spaces are well-approximated with low-degree polynomials
relative to the Gaussian distribution. A key step in our analysis is showing that this is the case even
relative to distributions whose low-degree moments approximately match those of a Gaussian. One
of our ideas is to start with a proof of the exact Gaussian case and modify it so it only relies on low-
degree properties of the distribution. We are aware of three distinct proofs of this exact Gaussian
case in the literature:

1. The method of [KKMS08] that uses specific facts about Hermite polynomials.

2. The noise sensitivity method of [KOS08]. This method also uses Hermite polynomials to
argue that functions that tend to be stable to perturbations of their input tend to be well-
approximated by low-degree polynomials.

5This tester requires that the distribution is confined to a box [−B,B]d, but this by itself is not a devastating
problem, since most of probability mass of a Gaussian is confined to such a box.

6Even when truncating the distribution to a box around the origin.

19

3. The method of [DGJ+10] that, in order to approximate a halfspace sign(v ·x+θ), constructs
a polynomial P (v · x) that approximates this halfspace tightly for values of |v · x| that are
not too large. It is then argued that large values of |v · x| do not contribute much to the
total L1 error of the polynomial because its contribution is weighted by a rapidly decaying
Gaussian weight.

As Hermite polynomials are the unique family of polynomials orthogonal under the Gaussian
distribution, the proof strategies of [KKMS08] and [KOS08] seem highly specialized to the distri-
bution being exactly Gaussian. Because of this, a method similar to the one of [DGJ+10] is the
one serving as our starting point.

This method needs to be modified in a thoroughgoing way in order to rely merely on the low-
degree moments of the distribution being close to those of Gaussian. For instance, a very easy-to-
show property of the d-dimensional standard Gaussian distribution is its anti-concentration when
projected on any direction. This property becomes much less obvious once one is only promised
that low-degree moments of the distribution are close to those of Gaussian, which is something
we do show. We note that this step of our proof is similar in spirit to the work of [KKK19b] that
introduces a notion of low-degree certified anti-concentration and shows it for various distributions.
Our proofs use extensively tools from polynomial approximation theory.

Given these ideas, our tester-learner pair does the following. The tester estimates the low-
degree moments of the distribution and compares them to the corresponding moments of the stan-
dard Gaussian. It follows then that halfspaces are well-approximated by low-degree polynomials
with respect to this distribution. The learning algorithm takes advantage of this by performing
low-degree polynomial L1 regression similar to the one used in [KKMS08].

A technical complication, which we deal with, is that both our tester and learner work with a
truncated version of the distribution. In other words, they discard the examples whose coordinates
are too large. This guarantees to us that we can actually produce estimates for the moments of the
truncated distribution (if distribution is not truncated, moments could even be infinite).

Note that our arguments use strongly the fact that we are working with halfspaces and not
with some arbitrary function class that is well-approximated by low-degree polynomials under
the Gaussian distribution. This is due to how we use the concentration and anti-concentration
properties of the distribution. In a certain sense this is necessary, as shown by our intractability
results for indicators of convex sets. Even though these functions are also well-approximated
by low-degree polynomials [KOS08], for them a similar method based on estimating low-degree
moments will provably not succeed. This underscores that designing tester-learner pairs can be
subtle and does not generally follow by mere extension of already existing analyses of agnostic
learning algorithms.

Tester-learner pair for agnostically learning halfspaces under uniform distribution on {±1}d.
We now discuss the techniques used to give our tester-learner pair for halfspaces under the uni-
form distribution on {±1}d. As we mentioned, the run-time we show here is dÕ(1/ϵ

4) and this is
concurrent work with [GKK23], who use other techniques. See Section 1.7 for complete details.

20

Our tester tests poly(1/ϵ)-wise independence of the input distribution with respect to the TV
distance using [OZ18, AAK+07, AGM03]. The learning algorithm uses the low-degree polynomial
L1 regression of [KKMS08]. To show that these two algorithms indeed form a valid tester-learner
pair we show that every halfspace is well-approximated by a low-degree polynomial relative to any
poly(1/ϵ)-wise independent distribution.

Suppose for a halfspace sign(v · x + θ) it is the case that the norm of the vector v is well-
distributed among all the coordinates. Then, by Berry-Esseen theorem, for x that is uniform over
{±1}d the inner product v · x is distributed similarly to a Gaussian. Roughly, we use this to argue
that if x is merely poly(1/ϵ)-wise independent then v · x has low-degree moments close to those
of a Gaussian. This allows us to use methods similar to the ones we use to give tester-learner pairs
for halfspaces under the standard Gaussian distribution.

Finally, we handle halfspaces sign(v · x + θ) for whom the norm of the vector v is not well-
spread across all the coordinates. We use the critical index machinery of [DGJ+10] to handle such
halfspaces.

Intractability results. Finally, we discuss the techniques used to show that 2Ω(d) samples are
required by (i) any tester-learner pair for learning indicator functions of convex sets under the
standard Gaussian on Rd (ii) any tester-learner pair for learning monotone functions under the
uniform distribution on {0, 1}d. See Section 1.8 for complete details.

From technical standpoint, we find these lower bounds surprising: The mentioned standard
agnostic learning algorithms in these settings rely on low-degree polynomial regression. This
suggests that testing low-degree moments of the distribution (as we did for halfspaces) ought to
lead to the development of a fast tester-learner pair. Yet, the lower bounds show that this can not
be done.

We now roughly explain how we prove these lower bounds. Let us focus on the lower bound
for tester-learner pairs for convex sets under standard Gaussian distribution (the lower bound for
monotone functions is similar). Take samples z1, · · · , zM from the standard Gaussian, and let D
be the uniform distribution on {z1, · · · , zM}. The first idea is to show that the tester will have
a hard time distinguishing D from the standard Gaussian if it uses much fewer than M samples.
(Out actual argument also takes into account that the tester sees labels and not only examples.)
The second idea is to show that (very likely over the choice of z1, · · · , zM) one can obtain, by
excluding only a small fraction of elements from {z1, · · · , zM}, a subset Q of them such that no
point in Q is in the convex hull of the other points in Q. Once we have such a set, we essentially7

define our hard-to-learn convex set to be the convex hull of a random subset of Q, and this convex
set will not contain any other elements of Q because no member of Q is in the convex hull of the
rest. In this way, unless a learner has seen a large fraction of the elements in Q already, it has no
way of predicting whether a previously unseen element in Q belongs to the random convex set.
We note that our argument is somewhat similar to well-known arguments proving impossibility of

7This is an oversimplification, as one still needs to figure out what to do with elements outside Q. We show that,
for all these elements, we can either include them into or exclude them from the convex set in such a way as to reveal
no information about which of the points in Q were included in the convex set.

21

approximation of the volume of a convex set via a deterministic algorithm [BF86, Ele86].

1.1.3 Comments on the framework.

What about cross-validation? In case of realizable learning (i.e. you are promised there is
no noise) a common approach to verifying success is via checking prediction error rate on fresh
data and making sure it is not too high. Does this idea allow one to construct a tester T for the
distributional assumption of some agnostic learner A? Such tester would (i) run A to obtain a
predictor f̂ (ii) test the success rate of f̂ on fresh example-label pairs (iii) accept or reject based on
the success rate.

As was mentioned in the discussion of our intractability results, there cannot be a general low-
overhead method of transforming standard agnostic learning algorithms into tester-learner pairs,
because of our intractability results. Therefore, in particular, there cannot be such a method based
on cross-validation.

Intuitively, the reason is the following. Suppose you run the learning algorithm, setting the
closeness parameter ϵ to 0.01, then check the success of the predictor on fresh data and find that
the generalization error is close to 0.25. This could potentially be consistent with the two following
situations: (1) there is a function in the concept class with close to zero generalization error, but
the learning algorithm gave a poor predictor due to a violation of the distributional assumption
(2) the distributional assumption holds, but every function in the concept class has generalization
error of at least 0.24. The Soundness criterion tells you that in case (1) you should reject, but the
completeness criterion tells you that in case (2) you should accept. Overall, there is no way to tell
from generalization error alone which of the two situations you are in, so there is no way to know
if you should accept or reject.

Label-aware vs label-oblivious testers. We say the tester T is label-aware if it makes use of
the labels given to it (and not only the examples). Otherwise, we call it label-oblivious. We feel
that label-obliviousness makes a testing algorithm fit better with the existing literature on testing
properties of distributions, because algorithms in this line of work decide to accept or reject a
distribution based only on samples from it (and no side information such as labels). However,
this condition is not strictly necessary for verifying success. Due to these considerations, our
impossibility results are against more general label-aware testers, while the tester given in this
chapter is label-oblivious.

1.1.4 Related work.

Agnostic learning under distributional assumptions using low-degree polynomial regression.
Since the introduction of the agnostic learning framework [Hau92, KSS94a] there has been an
explosion of work in agnostic learning. Making assumptions on the distribution on examples has
been ubiquitous in this line of work. So has been the use of low-degree polynomial regression
as one of the main tools. Previous to the work of [KKMS08], there existed an extensive body

22

of work on using low-degree polynomial regression for learning under distributional assumptions,
including [LMN93, AM91, FJS91, Man92, BT96, KOS02]. The work of [KKMS08] building on
[KSS94a] proposed to use low-degree polynomial L1 regression to obtain agnostic learning algo-
rithms for halfspaces under distribution assumptions, as well as extended these previously studied
low-degree regression algorithms into the agnostic setting. Further work used low degree poly-
nomial L1 regression to obtain agnostic learning algorithms for many more problems, again un-
der various distributional assumptions [OS06, BOW08, KOS08, GS10, Kan10, Wim10, HKM10,
DHK+10, CKKL12, ABL14, DSFT+14, FV15, FK15, BCO+15, CGG+17, FKV17, DKK+21].

Learning halfspaces. See the work of [DKK+21] and references therein, for a historical dis-
cussion about the problem of learning halfspaces, as well as some up-to-date references regarding
some problems connected to the one studied here.

Polynomial approximation theory. Polynomial approximation theory has been used extensively
as a tool for studying halfspaces. Among other work, see [KKMS08, DGJ+10, KLS09, Dan15,
DKTZ20b, DKK+21].

Other works in testing distributions. There is a large body of literature on finite sample guar-
antees for property testing of distributions. Algorithms developed within this framework are given
samples of an input distribution and aim to distinguish the case in which the distribution has a
specified property, from the case in which the distribution is far (in a reasonable distance met-
ric) from any distribution with that property. Properties of interest include whether the distri-
bution is uniform, independent, monotone, has high entropy or is supported by a large num-
ber of distinct elements. We mention a few specific results that are closest to the results in
this chapter: Let p be a distribution on a discrete domain of size M . For a “known” distri-
bution q (where the algorithm knows the value of q on every element of the domain, and does
not need samples from it – e.g., when q is the uniform distribution), distinguishing whether p is
the same as q from the case where p is ϵ-far (in L1 norm) from q requires Θ(

√
M/ϵ2) samples

[GR00, BFR+00, BFF+01, Pan08, DGPP16, DGK+21]. For a more in depth discussion of the
history and results in this area, see the monograph by Canonne [Can22].

Other frameworks of trusting agnostic learners. The work of Goldwasser, Rothblum, Shafer
and Yehudayoff considers the question of how an untrusted prover can convince a learner that
a hypothesis is approximately correct, and show that significantly less data is needed than that
required for agnostic learning [GRSY20].

23

1.2 Preliminaries.

1.2.1 Standard definitions.

The definition of agnostic learning is as follows:

Definition 1. An algorithmA is an agnostic (ϵ, δ)-learning algorithm for function class F relative
to the distribution D, if given access to i.i.d. example-label pairs (x, y) distributed according to
Dpairs, with the marginal distribution on the examples equal to D, the algorithmA with probability
at least 1− δ outputs a circuit computing a function f̂ , such that

Pr(x,y)∈RDpairs [y ̸= f̂(x)] ≤ min
f∈F

(
Pr(x,y)∈RDpairs [f(x) ̸= y]

)
+ ϵ.

The quantity Pr(x,y)∈RDpairs [f(x) ̸= y] is often called the generalization error of f̂ (a.k.a. out-
of-sample error or risk).

The following is standard theorem about agnostic learning from ℓ1-approximation. The proof
is implicit in [KKMS08] and this theorem has been implicitly used in much subsequent work (see
Subsection 1.1.4 for references). Let U be some domain we are working over.

Theorem 1. Let {g1, · · · gN} be a collection of real-valued functions over U that can be evaluated
in time T . Then, for every ϵ > 0, there is a learning algorithm A for which the following is true.
Let D be any distribution over U and let F be any class of Boolean functions over U , such that
every element of F is ϵ-approximated in L1 norm relative to the distribution D by some element
of span (g1, · · · , gN). Then, A agnostically (ϵ, δ)-learns F relative to D. The algorithm A uses
Õ
(
N
ϵ2
log
(
1
δ

))
samples and uses run-time polynomial in this number of samples and T .

We will also need the definition of k-wise independent distributions:

Definition 2. A distribution of a random variable x over {±1}d is called k-wise independent
(a.k.a. k-wise uniform) if for any size-k subset S of {1, · · · , s} the distribution of {xi : i ∈ S} is
uniform over {±1}k.

1.2.2 New framework: testing distributional assumptions of a learning al-
gorithm.

Definition 3. Let A be an agnostic (ϵ, δ1)-learning algorithm for function class F relative to the
distribution D. We say that an algorithm T is a tester for the distributional assumption of A if

1. (Soundness) Suppose a distribution Dpairs on example-label pairs is such that, given access
to i.i.d. labeled examples from it, the algorithm T outputs “Yes” with probability at least
1/4. Then A, given access to i.i.d. labeled examples from the same distribution Dpairs, will
with probability at least 1− δ1 output a circuit computing a function f̂ , such that

Pr(x,y)∈RDpairs [y ̸= f̂(x)] ≤ min
f∈F

(
Pr(x,y)∈RDpairs [f(x) ̸= y]

)
+ ϵ.

24

2. (Completeness) Suppose Dpairs is such that the marginal distribution on examples equals to
D. Then, given i.i.d. example-label pairs fromDpairs, tester T outputs “Yes” with probability
at least 3/4.

If this definition is satisfied, then we say that (A,T) form a tester-learner pair.

Constants 1/4 and 3/4 in the definition above can without loss of generality be replaced with
any other pair of constants 1− δ2 and 1− δ3 with δ2 ∈ (0, 1) and δ3 ∈ (δ2, 1). See Appendix 1.9.1
for the proof via a standard repetition argument.

1.3 An efficient tester-learner pair for learning halfspaces.

We now describe our tester-learner pair for learning halfspaces under the Gaussian distribution.
Roughly, the testing algorithm checks that the low-degree moments of the distribution on examples
are close enough to those of the standard Gaussian distribution. The learning algorithm uses a low-
degree polynomial regression. As explained earlier, both of the algorithms ignore examples whose
absolute value is too high, which allows them to obtain accurate estimates of distribution moments.

Tester-learner pair for learning halfspaces:

• LetC1, · · · , C4 be a collection of constants to be tuned appropriately. Define s := 2
⌊

1
2ϵ4

ln3
(
1
ϵ

)⌋
,

∆ :=
⌊

1
ϵ4
ln4
(
1
ϵ

)⌋
, t := C1∆ ln∆

√
log d+

√
2 ln

(
C2d
ϵ

)
,N1 :=

⌈
dC3s

⌉
andN2 :=

⌈
t2∆dC4∆

⌉
.

• Learning algorithm A. Given access to i.i.d. labeled samples (x, y) ∈ Rd × {±1} from an
unknown distribution:

1. Obtain N1 many labeled samples (xi, yi).

2. Discard all the samples (xi, yi) for which the absolute value of some coordinate
∣∣∣(xi)j

∣∣∣
is greater than t.

3. Run the algorithm of Theorem 1 on the remaining samples, with accuracy parameter
ϵ
10

, allowed failure probability 1
20
, and taking the set of {gi} to be the set of monomials

of degree at most s, i.e. the set
{∏d

j=1 x
αj

j :
∑

j αj ≤ s
}

. This gives us a circuit

computing predictor f̂ . Form a new predictor f̂ ′ that given x outputs (i) f̂(x) if for all
j ∈ [d], the value of

∣∣∣(xi)j

∣∣∣ is at most t. (ii) 1 if8 for some j ∈ [d], the value of
∣∣∣(xi)j

∣∣∣
exceeds t.

• Testing algorithm T . Given access to i.i.d. labeled samples x ∈ Rd from an unknown
distribution:

8This one’s arbitrary. Can also output 0 in this case.

25

1. For each j ∈ [d]:

(a) Estimate Pr [|xj| > t] up to additive ϵ
30n

with error probability 1
100n

.
(b) If the estimate is at least ϵ

10n
, output No and terminate.

2. DrawN2 fresh samples {xi}, and discard the ones for which the absolute value of some
coordinate

∣∣∣(xi)j

∣∣∣ is greater than t.

3. For every monomial
∏d

j=1 x
αj

j of degree at most ∆, compute its empirical expecta-
tion w.r.t. the samples {xi}. If for any of them resulting value is not within 1

2n∆ of

Ez∼N(0,Id×d)

[∏d
j=1 x

αj

j

]
=
∏d

j=1

(
(αj − 1)!! · 1αj is even

)
, output No and terminate.

4. Output Yes.

The following theorem shows that the above algorithms indeed satisfy the criteria for a tester-
learner pair for learning halfspaces under the Gaussian distribution:

Theorem 2 (Tester-learner pair for learning halfspaces under Gaussian distribution). Sup-
pose the values C1, · · · , C4 present in algorithms A and T are chosen to be sufficiently large
absolute constants, also assume d and 1

ϵ
are larger than some sufficiently large absolute constant.

Then, the algorithm A is an agnostic (O(ϵ), 0.1)-learner for the function class of linear threshold
functions over Rd under distribution N(0, Id×d) and the algorithm T is an assumption tester forA.
The algorithms A and T both require only dÕ(

1
ϵ4
) samples and run-time. Additionally, The tester

T is label-oblivious.

Note that an (O(ϵ), 0.1)-learner can be made an agnostic (ϵ, δ1)-learner for any fixed constant
δ1 and still require only dÕ(

1
ϵ4
) samples and run-time via a standard repeat-and-check argument.

The tester T for the original learner will remain an assumption tester for the new learner.
The proof of correctness of the above tester-learner pair for halfspaces makes use of the follow-

ing lemmas, which will be proved in Section 1.5. Lemma 1 states that as long as the low-degree
moments of a distribution are similar to the corresponding moments of the Gaussian distribu-
tion, then the distribution is concentrated and anti-concentrated when projected onto any direction.
Lemma 2 states that as long as distribution D satisfies the “nice” properties of concentration and
anti-concentration, then any halfspace can be approximated by a low-degree polynomial with re-
spect to distribution D. Taken together, these lemmas will be used to show that for any distribution
D, if the moments of D look similar to moments of the Gaussian distribution, then halfspaces are
well-approximated by low degree polynomials under D.

Lemma 1 (Low degree moment lemma for distributions.). Suppose D is a distribution over Rd

and ∆ is an even positive integer, such that for every monomial
∏d

i=1 x
αi
i of degree at most ∆ we

have ∣∣∣∣∣Ex∼D

[
d∏

i=1

xαi
i

]
− Ex∼N(0,Id×d)

[
d∏

i=1

xαi
i

]∣∣∣∣∣ ≤ 1

d∆
.

Further, assume that ∆ ≥ 1
ϵ4
ln4
(
1
ϵ

)
. Then, for every unit vector v, the random variable v ·x (with

x ∈R D) has the following properties

26

• Concentration: For any even positive integer s ≤ ∆, we have (Ex∈RD [|v · x|s])1/s ≤ 2
√
s.

• Anti-concentration: for any real y, we have

Prx∈RD [v · x ∈ [y, y + ϵ]] ≤ O (ϵ) .

Lemma 2 (Low degree approximation lemma for halfspaces.). Suppose D is a distribution on
Rd and v ∈ Rd is a unit vector, such that for some positive real parameters α, γ, ϵ and a positive
integer parameter s0 we have

• Anti-concentration: for any real y, we have Prx∈RD [v · x ∈ [y, y + ϵ]] ≤ α,

• Concentration: (Ex∈RD [|v · x|s0])1/s0 ≤ β, for some β ≥ 1.

Also assume s0 > 5β
ϵ2

and that ϵ is smaller than some sufficiently small absolute constant. Then,
for every θ ∈ R and there is a polynomial P (x) of degree at most 2β

ϵ2
+ 1 such that

Ex∈RD [|P (v · x)− sign(v · x− θ)|] = O

(
α + ϵ+

(8β)
2β

ϵ2
+1

2s0

)
.

Each coefficient of the polynomial P has magnitude of at most O
(
2

4β

ϵ2

)
.

1.4 Technical preliminaries.

1.4.1 Polynomial approximation theory.

We will need some standard facts about Chebychev polynomials and approximation of func-
tions using them. See, for example, the text [Tre19] for comprehensive treatment of this topic.
First, we define Chebychev polynomials and present relevant facts about them. On the interval
[−1, 1] the k-th Chebychev polynomial can be defined as9 Tk(x) := cos (k arccos(x)) .

For any k ≥ 0, the polynomial Tk(x) maps [−1, 1] to [−1, 1] (this follows immediately from
the definition). Also, it is known that the Chebyshev polynomials satisfy a recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x),

with the first two polynomials being T0(x) = 1 and T1(x) = x.
To present a standard theorem from text [Tre19] about approximating functions with Cheby-

shev polynomials, we will need the standard notions of Lipschitz continuity and of bounded vari-
ation functions. A function f is said to be Lipschitz continuous on [−1, 1] if there is some C

9One needs to check that cos(kα) is indeed a polynomial in cosα, which follows by writing cos(kα) =
eikα+e−ikα

2 = 1
2

(
(cosα+ i sinα)

k
+ (cosα− i sinα)

k
)

, expanding, observing that terms involving odd powers

of sinα cancel out, and using the identity sin2 α = 1− cos2 α.

27

so for any x, y ∈ [−1, 1] we have that |f(x)− f(y)| ≤ C |x− y| . For a differentiable function
f : [−w,w]→ R, the total variation of f is the L1 norm of it’s derivative, i.e.∫ w

−w

∣∣∣∣df(x)dx

∣∣∣∣ dx.
If f has a single discontinuity at some point a and is differentiable everywhere else, then the
total variation of f is defined as the sum of the following three terms (i)

∫ a

−w

∣∣∣df(x)dx

∣∣∣ dx, (ii) the

magnitude of the discontinuity at a and (iii)
∫ w

a

∣∣∣df(x)dx

∣∣∣ dx. Analogously, the definition extends to

functions that are differentiable outside of finitely many discontinuities10. We say “f is of bounded
variation V ” if the total variation of f is at most V .

We are now ready to state the following theorem about approximating functions using Cheby-
shev polynomials:

Theorem 3 (Consequence of Theorem 7.2 in the text [Tre19] (see also Theorem 3.1 on page 19
in the text [Tre19])). Let f be Lipschitz continuous on [−1, 1] and suppose the derivative f

′
is of

bounded variation V . Define for k ≥ 0

ak :=
1 + 1k>0

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx.

Then, for any s ≥ 0 we have

max
x∈[−1,1]

∣∣∣∣∣f(x)−
s∑

k=0

akTk(x)

∣∣∣∣∣ = O

(
V

s

)
.

The partial sums
∑s

k=0 akTk are called Chebyshev projections.

1.5 Proving the two main lemmas (Lemma 1, and Lemma 2)
via polynomial approximation theory.

1.5.1 Propositions useful for proving both main lemmas.

Here we will present proposition that will be useful for proving both Lemma 1 and 2. We start
with an observation that bounds the magnitude of the coefficients of Chebyshev polynomials.

Observation 1. Let f : R → [−1, 1] be a Lipschitz continuous function. Let s ≥ 1 be an integer,
let w ≥ 1 be a real number, and let fs(x) :=

∑s
k=0 akTk(

x
w
), where ak :=

1+1k>0

π

∫ 1

−1
f(wy)Tk(y)√

1−y2
dy.

Then, the largest coefficient from among all the monomials of fs(x) has value of at most O (s3s).
10It is also standard to consider more general functions, but we will not need that.

28

Proof. See Appendix 1.9.2.

Proving both lemmas, we will be approximating certain functions using Chebyshev polynomi-
als re-scaled to the window [−w,w]. The following proposition lets us bound the error between
function f and its low-degree polynomial approximation, contributed by the region (−∞, w) ∪
(w,+∞).

Proposition 1. Let f be a Lipschitz continuous function R → [−1, 1]. Let s ≥ 1 be an integer
and w ≥ 1 be real-valued, and let fs(x) :=

∑s
k=0 akTk(

x
w
), where ak := 1+1k>0

π

∫ 1

−1
f(wy)Tk(y)√

1−y2
dy.

Then, for any distribution D, it is the case that

Ex∈RD

[
|f(x)− fs(x)|1|x|>w

]
≤ O

(
4sEx∈RD

[
|x|s 1|x|>w

])
.

Proof. See Appendix 1.9.3.

The following proposition, in turn, allows us to bound the expression we encounter in Proposi-
tion 1 in terms of a bound on the moments of distribution D.

Proposition 2. Let D be a distribution on R and s0 ∈ Z>0 such that

(Ex∈RD [|x|s0])1/s0 ≤ β.

Then, for any k ∈ Z ∩ [0, s0/2] and w ∈ R+ we have

Ex∈RD

[
|x|k 1|x|>w

]
≤ 2wk

(
β

w

)s0

Proof. See Appendix 1.9.4.

1.5.2 Proof of low degree moment lemma for distributions(Lemma 1).

Let us recall the setting of Lemma 1. D is a distribution over Rd and ∆ is an even positive
integer, such that for every monomial

∏d
i=1 x

αi
i of degree at most ∆ we have∣∣∣∣∣Ex∼D

[
d∏

i=1

xαi
i

]
− Ex∼N(0,Id×d)

[
d∏

i=1

xαi
i

]∣∣∣∣∣ ≤ 1

d∆
.

Further, we have that ∆ ≥ 1
ϵ4
ln4
(
1
ϵ

)
. Then, we would like to show that for every unit vector v,

the random variable v · x (with x ∈R D) has the following properties

• Concentration: For any even integer s ≤ ∆, we have (Ex∈RD [|v · x|s])1/s ≤ 2
√
s.

29

• Anti-concentration: for any real-valued parameter w ≥ 1, for any real y, we have

Prx∈RD [v · x ∈ [y, y + ϵ]] ≤ O (ϵ) .

We start with the following observation saying that if moments of a distribution D are similar to
standard Gaussian, then the expectation of a polynomial of a form (v · x)s for D is similar to the
same expectation under standard Gaussian.

Observation 2. SupposeD is a distribution over Rd and ∆ is a positive integer, such that for every
monomial

∏d
i=1 x

αi
i of degree at most ∆ we have

∣∣∣Ex∼D

[∏d
i=1 x

αi
i

]
− Ex∼N(0,1)

[∏d
i=1 x

αi
i

]∣∣∣ ≤
1
d∆

. Then, for any unit vector v and integer s ≤ ∆ we have

∣∣Ex∈RD [(v · x)s]− Ex∈RN(0,Id×d) [(v · x)
s]
∣∣ ≤ ds

d∆
.

Proof. See Appendix 1.9.5.

Let us now show the concentration property. Let s be even. Recall that for even s we have
Ex∼N(0,Id×d) [(v · x)

s] = Ex′∼N(0,1) [(x
′)s] = (s − 1)!! ≤ ss/2. This, together with Observation 2

implies

(Ex∼D [(v · x)s])1/s ≤
(
ss/2 +

ds

d∆

)1/s

=
√
s

(
1 +

ds−∆

ss/2

)1/s

≤ 2
√
s,

which is the concentration property we wanted to show.
Now, we proceed to the anti-concentration property. Recall that for this property we need to

bound Prx∈RD [v · x ∈ [y, y + ϵ]]. To this end, we first approximate 1z∈[y,y+ϵ] using the following
function

g(z) :=



0 if z ≤ y − ϵ,
z−(y−ϵ)

ϵ
if z ∈ [y − ϵ, y] ,

1 if z ∈ [y, y + ϵ] ,
(y+2ϵ)−z

ϵ
if z ∈ [y + ϵ, y + 2ϵ] ,

0 if z ≥ y + 2ϵ.

(1.1)

The key properties of g are (i) g(z) ≥ 1z∈[y,y+ϵ] (ii) g(z) ∈ [0, 1] (ii) g(z) is Lipschitz continuous
(iii) the derivative g′(z) is of bounded variation of 4

ϵ
(because the function has four discontinuities,

each of magnitude 1/ϵ and it stays constant in-between the discontinuities).
Let w ≥ 1 be real-valued and s be an integer in [1,∆/2], to be chosen later and let gs(x) :=∑s

k=0 akTk(
x
w
), where ak := 1+1k>0

π

∫ 1

−1
g(wy)Tk(y)√

1−y2
dy. Observation 3 and propositions 3 and 4 are

30

stated and proven below, and we use them no to get the following bound:

Prx∈RD [v · x ∈ [y, y + ϵ]] ≤ Ex∈RD [g(v · x)] ≤

O(ϵ) by Observation 3︷ ︸︸ ︷
Ex∈RN(0,In×n) [g(v · x)] +

O
(
4sws

(
2
√
∆

w

)∆
+ w

ϵs

)
by Proposition 3︷ ︸︸ ︷

Ex∈RN(0,In×n) [|gd(v · x)− g(v · x)|] +

+

O
(
4s ds

d∆

)
by Proposition 4︷ ︸︸ ︷∣∣Ex∈RD [gd(v · x)]− Ex∈RN(0,In×n) [gd(v · x)]

∣∣+
+ Ex∈RD [|g(v · x)− gd(v · x)|]︸ ︷︷ ︸

O
(
4sws

(
2
√
∆

w

)∆
+ w

ϵs

)
by Proposition 3

= O

ϵ+ 4dwd

(
2
√
∆

w

)∆

+
w

ϵd
+ 4d

nd

n∆

 .

Now, recall we assumed without loss of generality that ∆ = 1
ϵ4
ln4
(
1
ϵ

)
, so taking11 s = 1

10ϵ4
ln2
(
1
ϵ

)
and w = 10

ϵ2
ln2
(
1
ϵ

)
we get

Prx∈RD [v · x ∈ [y, y + ϵ]] ≤ O

ϵ+ 4dwd

(
2
√
∆

w

)∆

+
w

ϵd
+ 4d

nd

n∆

 =

O

(
ϵ+

(
40

ϵ2
ln2

(
1

ϵ

)) 1
10ϵ4

ln2(1
ϵ)(1

5

) 1
ϵ4

ln4(1
ϵ)

+ 4
1

10ϵ4
ln2(1

ϵ) 1

n
1
ϵ4

ln4(1
ϵ)−

1
10ϵ4

ln2(1
ϵ)

)
= O(ϵ).

The only thing left to do is to prove the observations referenced above.

Observation 3. For the function g as defined in Equation 1.1, we have

Ex∈RN(0,Id×d) [g(v · x)] = O(ϵ)

Proof. The function g has a range of [0, 1] and is supported on [y − ϵ, y + 3ϵ]. Also, v · x is
distributed as a standard one-dimensional Gaussian. Therefore, the probability that v · x lands in
[y − ϵ, y + 3ϵ], is at most O(ϵ), which finishes the proof.

Proposition 3. Suppose D is a distribution over Rd and ∆ is a positive integer, such that for every
monomial

∏d
i=1 x

αi
i of degree at most ∆ we have

∣∣∣Ex∼D

[∏d
i=1 x

αi
i

]
− Ex∼N(0,Id×d)

[∏d
i=1 x

αi
i

]∣∣∣ ≤
1
d∆

. Let s be an integer in [1,∆/2], let w ≥ 1 be a real-valued parameter, and suppose g :
[−w,w] → [−1, 1] is a Lipschitz function whose derivative g′ is of Bounded variation V , and let

11We also check that (taking ϵ small enough) s is indeed in [1,∆/2], as was required earlier.

31

gs(x) :=
∑s

k=0 akTk(
x
w
), where ak :=

1+1k>0

π

∫ 1

−1
g(wy)Tk(y)√

1−y2
dy. Then, it is the case that

Ex∈RD [|g(v · x)− gs(v · x)|] ≤ O

4sws

(
2
√
∆

w

)∆

+
V w

s

 .

Proof. Proposition 1 and Proposition 2 imply

Ex∼D

[
|g(v · x)− gd(v · x)|1|v·x|>w

]
≤

O
(
4dEx∈RD

[
|v · x|d 1|v·x|>w

])
≤ 4dwd

(
2
√
∆

w

)∆
∆

∆− d
.

To use Theorem 3, we need to bound the total variation of the function dg(wz)
dz

= wg′(wz). Inspect-
ing the definition of total variation, we see that g′(wz) has the same total variation as g′(z), which
is at most V . Therefore, the total variation of dg(wz)

dz
is at most V w. Thus, we have by Theorem 3

that

Ex∼D

[
|g(v · x)− gs(v · x)|1|v·x|≤w

]
≤ max

z∈[−w,w]
|g(z)− gs(z)| ≤ O

(
V w

s

)
.

Summing the two equations above and recalling that s ≤ ∆/2, our proposition follows.

Proposition 4. Suppose D is a distribution over Rd and ∆ is a positive integer, such that for every
monomial

∏d
i=1 x

αi
i of degree at most ∆ we have

∣∣∣Ex∼D

[∏d
i=1 x

αi
i

]
− Ex∼N(0,1)

[∏d
i=1 x

αi
i

]∣∣∣ ≤
1
d∆

. Let g : R → [−1, 1] be a Lipschitz continuous function, and gs(x) :=
∑s

k=0 akTk(
x
w
),where

ak :=
1+1k>0

π

∫ 1

−1
f(wy)Tk(y)√

1−y2
dy. Then

∣∣Ex∈RD [gs(v · x)]− Ex∈RN(0,Id×d) [gs(v · x)]
∣∣ = O

(
4s
ds

d∆

)
.

Proof. Observation 1 implies that gs(z) is a degree s polynomial, whose largest coefficient is at
most s3s. Using Observation 2 for each of these monomials, we get

∣∣Ex∈RD [gs (v · x)]− Ex∈RN(0,Id×d) [gs(v · x)]
∣∣ ≤ O

(
s23s

) ds
d∆

= O

(
4s
ds

d∆

)
.

1.5.3 Proof of low degree approximation lemma for halfspaces (Lemma 2).

Let us recall what we need to show to prove Lemma 2. Without loss of generality, we assume
we are in one dimension. D is a distribution on R, such that for some positive real parameters
α, γ, ϵ and a positive integer parameter s0 we have

32

• Anti-concentration: for any real y, we have Prx∈RD [x ∈ [y, y + ϵ]] ≤ α,

• Concentration: (Ex∈RD [|x|s0])1/s0 ≤ β, for some β ≥ 1.

Also we have s0 > 5β
ϵ2

and that ϵ is smaller than some sufficiently small absolute constant. Then,
for every θ ∈ R we would like to show there is a polynomial P (x) of degree at most 2β

ϵ2
+ 1 such

that

Ex∈RD [|P (x)− sign(x− θ)|] = O

(
α + ϵ+

(8β)
2β

ϵ2
+1

2s0

)
.

Let w > 1 and s ∈ Z+ be parameters, values of which will be set later. We will approximate
the sign function with a polynomial in the following two steps:

• Approximate sign(x− θ) by a continuous function

f(x) :=


1 if x−θ

ϵ
> 1,

−1 if x−θ
ϵ
< −1,

x−θ
ϵ

otherwise.

• For a parameter s, approximate f(x) by

fs(x) :=
s∑

k=0

akTk(
x

w
),

where

ak :=
1 + 1k>0

π

∫ 1

−1

f(wy)Tk(y)√
1− y2

dy.

First, we observe that f is a good approximator for sign(x− θ) with respect to D.

Proposition 5. If D is a distribution over R such that for every x0 ∈ R it holds that
Prx∈RD [x ∈ [x0, x0 + ϵ]] ≤ α, then (with f(x) defined as above) we have

Ex∈RD [|f(x)− sign(x− θ)|] ≤ 2α.

Proof. The two functions differ only on [θ − ϵ, θ + ϵ], with the absolute value of difference being
at most 1. Since the distribution D cannot have probability mass more than 2α in this interval, the
proposition follows.

Secondly, we show that fs is a good approximator to f with respect to D, within the region
[−w,w].

Proposition 6. For any distribution D, we have

Ex∈RD

[
|f(x)− fs(x)|1|x|≤w

]
≤ O

(w
ϵs

)
33

Proof. Using Theorem 3 we have

Ex∈RD

[
|f(x)− fs(x)|1|x|≤w

]
≤ max

x∈[−w,w]
|f(x)− fs(x)| = max

y∈[−1,1]
|f (wy)− fs (wy)| = O

(w
ϵs

)
.

Now, we put all the relevant propositions together to show the lemma. Using Propositions 1
and 2, we see that if we have s ∈ Z ∩ [1, d0/2] then

Ex∈RD

[
|f(x)− fs(x)|1|x|>w

]
≤ O

(
4sEx∈RD

[
|x|s 1|x|>w

])
≤ O

(
4s2ws

(
β

w

)s0)
Together with Proposition 6, this implies that

Ex∈RD [|f(x)− fs(x)|] ≤ O

(
4s2ws

(
β

w

)s0)
+O

(w
ϵs

)
This, in turn, together with Proposition 5 implies that

Ex∈RD [|fs(x)− sign(x− θ)|] = O

(
α +

w

ϵs
+ 4sws

(
β

w

)s0)
.

Taking12 w = 2β and s =
⌈
2β
ϵ2

⌉
we get

Ex∈RD [|fs(x)− sign(x− θ)|] = O

(
α + ϵ+

(8β)⌈
2β

ϵ2
⌉

2s0

)
= O

(
α + ϵ+

(8β)
2β

ϵ2
+1

2s0

)
.

Finally, we note that by Observation 1 we have that each coefficient of the polynomial fs
has a magnitude of at most O(s3s) = O

(
4

2β

ϵ2

)
. This completes the proof of the low degree

approximation lemma for halfspaces (Lemma 2).

1.6 Proof of Main Theorem via two main lemmas.

1.6.1 Truncated Gaussian has moments similar to Gaussian

Recall that our tester truncates the samples and checks that low-degree moments are close to
the corresponding moments of a Gaussian. If the distribution is indeed Gaussian, the following
proposition shows that this truncation step does not distort the moments too much.

12Recall that to do all this we needed that s is in [1, s0/2]. Recall that by an assumption of the lemma we are proving
we have s0 > 5β

ϵ2 and β ≥ 1. Therefore, for ϵ smaller than some sufficiently small absolute constant we indeed have⌈
2β
ϵ2

⌉
∈ [1, s0/2].

34

Proposition 7. Let
∏d

i=1 x
αi
i be a monomial of degree at most ∆ and t a real number in the set[

2
√
∆+ 1,+∞

)
. Then we have∣∣∣∣∣Ex∼N(0,Id×d)

[
d∏

i=1

xαi
i

∣∣∣∣∀i : |xi| ≤ t

]
− Ex∼N(0,Id×d)

[
d∏

i=1

xαi
i

]∣∣∣∣∣ ≤ O
(
2∆∆

∆+2
2 t∆e−

t2

2

)
.

Proof. If any of the αi is odd, both expectations are zero, so the proposition follows trivially. So,
without loss of generality, assume that each αi is even. Also, without loss of generality, we can
also assume that d ≥ ∆ and the αi can be non-zero only for i ∈ {1, · · ·∆}. We prove the following
observation separately:

Observation 4. For s ≥ 0, if w ≥ 2
√
s+ 1, then it is the case that

Ex∈RN(0,1)
[
xs1|x|>w

]
≤ O

(
wse−

w2

2

)
Proof. We have

∫ +∞
w

xse−
x2

2 dx =
∫ +∞
w

e
−
(

x2

2
−s lnx

)
dx. For x ≥ w, we have

d

dx

(
x2

2
− s lnx

)
= x− s

x
≥ w − s

w
,

which means (
x2

2
− s lnx

)
≥ w2

2
− s ln (w) +

(
w − s

w

)
(x− w) .

Thus, we have∫ +∞

w

xse−
x2

2 dx ≤ e−
w2

2
+s ln(w)

∫ +∞

w

e−(w− s
w)(x−w) dx =

wse−
w2

2(
w − s

w

) ≤ O
(
wse−

w2

2

)
.

Now, we consider the one-dimensional case of our proposition.

Observation 5. Let s be a positive integer and t be a real number, such that t is in [2
√
s+ 1,+∞),

then ∣∣∣∣Ex∼N(0,1)

[
xs
∣∣∣∣ |x| ≤ t

]
− Ex∼N(0,1) [x

s]

∣∣∣∣ ≤ O
(
tse−

t2

2

)
.

Proof. If s is odd, both expectations are zero, so without loss of generality assume that s is even.

35

We have∣∣∣∣Ex∼N(0,1)

[
xd
∣∣∣∣ |x| ≤ t

]
− Ex∼N(0,1)

[
xd
]∣∣∣∣ =∣∣∣∣∣Ex∼N(0,1)

[
xd1|x|≤t

]
Prx∼N(0,1) [|x| ≤ t]

− Ex∼N(0,1)
[
xd1|x|≤t

]
− Ex∼N(0,1)

[
xd1|x|>t

]∣∣∣∣∣ =∣∣∣∣∣Ex∼N(0,1)
[
xd1|x|≤t

]
Prx∼N(0,1) [|x| > t]

Prx∼N(0,1) [|x| ≤ t]
− Ex∼N(0,1)

[
xd1|x|>t

]∣∣∣∣∣ ≤
Using (i) triangle inequality (ii) Prx∼N(0,1) [|x| ≤ t]≥ Ω(1) because t ≥ 1.︷ ︸︸ ︷

≤ O
(∣∣Ex∼N(0,1)

[
xd1|x|≤t

]
Prx∼N(0,1) [|x| > t]

∣∣)+ ∣∣Ex∼N(0,1)
[
xd1|x|>t

]∣∣ ≤
≤ O

(
dd/2

∣∣Prx∼N(0,1) [|x| > t]
∣∣)+ ∣∣Ex∼N(0,1)

[
xd1|x|>t

]∣∣︸ ︷︷ ︸
Since Ex∼N(0,1) [x

s] = (s− 1)!!.

≤ O
(
dd/2e−

t2

2 + tde−
t2

2

)
︸ ︷︷ ︸

Using Observation 4.

≤ O
(
tde−

t2

2

)
︸ ︷︷ ︸

Because t >
√
s.

.

We proceed to reduce the high-dimensional case to the one-dimensional version we have just
shown.∣∣∣∣∣Ex∼N(0,In×n)

[
n∏

i=1

xαi
i

]
− Ex∼N(0,In×n)

[
n∏

i=1

xαi
i

∣∣∣∣∀i : |xi| ≤ t

]∣∣∣∣∣ =∣∣∣∣∣
∆∏
i=1

Ex∼N(0,1) [x
αi]−

∆∏
i=1

Ex∼N(0,1)

[
xαi

∣∣∣∣ |x| ≤ t

]∣∣∣∣∣ ≤
∆∑
j=1

∣∣∣∣∣
j−1∏
i=1

Ex∼N(0,1)

[
xαi

∣∣∣∣ |x| ≤ t

] ∆∏
i=j

Ex∼N(0,1) [x
αi]−

j∏
i=1

Ex∼N(0,1)

[
xαi

∣∣∣∣ |x| ≤ t

] ∆∏
i=j+1

Ex∼N(0,1) [x
αi]

∣∣∣∣∣ =
∆∑
j=1

∣∣∣∣∣
j−1∏
i=1

Ex∼N(0,1)

[
xαi

∣∣∣∣ |x| ≤ t

] ∆∏
i=j+1

Ex∼N(0,1) [x
αi]

(
Ex∼N(0,1) [x

αj]− Ex∼N(0,1)

[
xαj

∣∣∣∣ |x| ≤ t

])∣∣∣∣∣ .
Now, we have Ex∼N(0,1)

[
xαi

∣∣∣∣ |x| ≤ t

]
=

Ex∼N(0,1)[xαi1|x|≤t]
Prx∼N(0,1)[|x|≤t]

≤ 2Ex∼N(0,1) [x
αi], since Prx∼N(0,1) [|x| ≤ t] ≥

0.5 for t ≥ 1. Using this, Observation 5 and the fact that Ex∼N(0,1) [x
αi] = (αj − 1)!! ≤ α

αj/2
j with

36

the inequality above, we have∣∣∣∣∣Ex∼N(0,In×n)

[
n∏

i=1

xαi
i

∣∣∣∣∀i : |xi| ≤ t

]
− Ex∼N(0,In×n)

[
n∏

i=1

xαi
i

]∣∣∣∣∣ ≤
2∆

∆∏
i=1

Ex∼N(0,1) [x
αi]

∆∑
j=1

∣∣∣∣(Ex∼N(0,1) [x
αj]− Ex∼N(0,1)

[
xαj

∣∣∣∣ |x| ≤ t

])∣∣∣∣ ≤
O

(
2∆

∆∏
j=1

α
αj/2
j

(
∆∑
j=1

tαje−
t2

2

))
≤ O

(
2∆∆∆/2

(
∆ · t∆e−

t2

2

))
= O

(
2∆∆

∆+2
2 t∆e−

t2

2

)
This completes the proof of Proposition 7.

1.6.2 Finishing the proof of Theorem 2.

In this subsection we finish the proof of Theorem 2, using the low degree moment lemma for
distributions (Lemma 1) and the low degree approximation lemma for halfspaces (Lemma 2). The
main thing left to do is to address issues relating to truncation of samples in the learning and testing
algorithms.

We now restate the theorem. We are given that the values C1, · · · , C4 present in algorithms
A and T (in the beginning of Section section 1.3 on page 25) are chosen to be sufficiently large
absolute constants, and also d and 1

ϵ
are larger than some sufficiently large absolute constant.

Then, we need to show that the algorithm A is an agnostic (O(ϵ), 0.1)-learner for the function
class of linear threshold functions over Rd under distribution N(0, Id×d) and the algorithm T is
an assumption tester for A. We also need to show that A and T require only dÕ(

1
ϵ4
) samples and

run-time.
Bounds on the run-time and sample complexity of our algorithms follow directly from our

choice of parameters.

• The learner A draws N1 := dÕ(
1
ϵ4
) samples, then performs a computation running in time

polynomial in (i) N1 (ii) the number of monomials
∏d

j=1 x
αj

j of degree at most s, which is
O (ds) (this includes the run-time consumed by the algorithm of Theorem 1). Overall, the
learner A uses dÕ(

1
ϵ4
) samples and run-time.

• The tester T first performs estimations of values Pr [|xj| > t] up to additive ϵ
30n

with error
probability 1

100n
, which in total require poly

(
d
ϵ

)
samples and run-time. Then, the tester T

obtains N2 :=
⌈
t∆dC4∆

⌉
samples (where ∆ :=

⌊
1
ϵ4
ln4
(
1
ϵ

)⌋
and t := C1∆ ln∆

√
log d +√

2 ln
(
C2d
ϵ

)
) and performs a polynomial time computation with them. We see that t =

O
(
poly

(
1
ϵ
, d
))

and therefore N2 = dÕ(
1
ϵ4
). Finally, the tester T runs a computation running

in time polynomial in (i) N2 and (ii) the number of monomials
∏d

j=1 x
αj

j of degree at most

∆, which isO
(
d∆
)
. Overall, we get that the run-time and sample complexity of T is dÕ(

1
ϵ4
).

37

Proposition 8. The following proposition uses the low degree approximation lemma for halfspaces
(Lemma 2) to argue that, under certain regularity conditions on the distribution D, the learning
algorithm satisfies the agnostic learning guarantee. Suppose the C1, · · · , C4 are chosen to be suffi-
ciently large absolute constants, d and 1

ϵ
are larger than some sufficiently large absolute constant.

Suppose D is a distribution over Rd such that it the following properties hold

• Good tail: We have Prx∈RD [∃i ∈ [d] : |xi| > t] ≤ ϵ
5
.

• Concentration along any direction for truncated distribution: For any unit vector v we
have (

Ex∈RD

[
|v · x|s

∣∣∣∣∀i ∈ [d] : |xi| ≤ t

])1/s

≤ 2
√
s.

• Anti-concentration along any direction for truncated distribution: For any unit vector v
and for any real y, we have

Prx∈RD

[
v · x ∈ [y, y + ϵ]

∣∣∣∣∀i ∈ [d] : |xi| ≤ t

]
≤ O (ϵ) .

Then, the algorithm A is an agnostic (O (ϵ) , 0.1)-learner for the function class of linear threshold
functions over Rd under distribution D with failure probability at most 1

20
.

Proof. Let Dtruncated be the distribution of x drawn fromD conditioned on |xi| ≤ t for all i. We see
that the premises of this proposition imply that the distributionDtruncated satisfies the premises of the
low degree approximation lemma for halfspaces(Lemma 2) with parameters s0 = s, α = O(ϵ) and
β = 2

√
s. Taking ϵ smaller than some absolute constant ensures that the condition s > 5β

ϵ2
= 10

√
s

ϵ2

is also satisfied.
The low degree approximation lemma for halfspaces(Lemma 2) then allows us to conclude that

for every θ ∈ R and for any w ≥ 1 there is a polynomial P (x) of degree at most s such that

Ex∈RDtruncated [|sign(v · x− θ)− P (v · x)|] = O

ϵ+ (16
√
s)

4
√
s

ϵ2
+1

2s

 .

Recalling that s := 2
⌊

1
2ϵ4

ln3
(
1
ϵ

)⌋
so we get that

Ex∈RDtruncated [|sign(v · x− θ)− P (v · x)|] = O

ϵ+ (O (1
ϵ2
ln1.5

(
1
ϵ

)))O(1
ϵ4

ln1.5(1
ϵ))

2Ω(
1
ϵ4

ln3(1
ϵ))

 .

For ϵ smaller than some sufficiently small absolute constant, the above is O(ϵ).
Thus, we have that for any linear threshold function sign (v · x− θ) there is a degree s multi-

variate polynomial Q for which

Ex∈RDtruncated [|sign (v · x− θ)−Q(x)|] ≤ O(ϵ)

38

In other words, underDtruncated, any linear threshold function sign (v · x− θ) isO(ϵ)-approximated
inL1 by something in the span of set of monomials of degree at most s, i.e. the set

{∏d
j=1 x

αj

j :
∑

j αj ≤ s
}

.

Now, Theorem 1. tells us that with probability at least 1− 1
20

the predictor f̂ given in step 3 has an
error of at most O(ϵ) more than sign(v · x− θ) for samples x ∈R Dtruncated. Overall, recalling the
definition of Dtruncated we have

Prx,y∈RDpairs

[
f̂ ′(x) ̸= y

]
≤

Prx∈RD [∃i ∈ [n] : |xi| > t] + Prx,y∈RDpairs

[
f̂(x) ̸= y

∣∣∣∣∀i ∈ [n] : |xi| ≤ t

]
≤

Prx,y∈RDpairs

[
sign(v · x− θ) ̸= y

∣∣∣∣∀i ∈ [n] : |xi| ≤ t

]
+O (ϵ) ,

which completes the proof.

Now, the following proposition, using low degree moment lemma for distributions (Lemma 1),
tells us that the tester we use (1) is likely accept if the Gaussian assumption indeed holds (2) is
likely to reject if the regularity conditions for Proposition 8 do not hold.

Proposition 9. Suppose the C1, · · · , C4 are chosen to be sufficiently large absolute constants, d
and 1

ϵ
are larger than some sufficiently large absolute constant. Then, there is some absolute

constant B, so the tester T has the following properties:

1. If T is given samples from N(0, Id×d), it outputs Yes with probability at least 0.9.

2. The tester T rejects with probability greater than 0.9 any D for which at least one of the
following holds:

(a) Bad tail: We have Prx∈RD [∃i ∈ [d] : |xi| > t] > ϵ
5
.

(b) Failure of concentration along some direction for truncated distribution: there is a
unit vector v such that(

Ex∈RD

[
|v · x|s

∣∣∣∣∀i ∈ [d] : |xi| ≤ t

])1/s

> 2
√
s.

(c) Failure of anti-concentration along some direction for truncated distribution: there
is a unit vector v and real y, for which

Prx∈RD

[
v · x ∈ [y, y + ϵ]

∣∣∣∣∀i ∈ [d] : |xi| ≤ t

]
> Bϵ.

Proof. First, assume that T is getting samples from N(0, Id×d) and let us prove that T outputs Yes
with probability at least 0.9.

39

Since t ≥ 1, by we have13 Prz∈N(0,1) [|z| > t] ≤ O
(
e−

t2

2

)
. As t ≥

√
2 ln

(
C2d
ϵ

)
, taking C2

large enough we get Prz∈N(0,1) [|z| > t] ≤ ϵ
30n

. Therefore, N(0, Id×d) passes step 1 of tester T with
probability at least 1− 1

100
.

Also, Prz∈N(0,1) [|z| > t] ≤ ϵ
30n

implies that Prx∈N(0,Id×d) [∀i ∈ [d] : |xi| ≤ t] ≥ 1 − ϵ
30

. To-
gether with a very loose application of the Hoeffding bound, we see that for sufficiently large C4

with probability at least 1 − 1
100

only at most half of the samples are discarded in the step 2 of T .
We henceforth assume this indeed was the case. The remaining samples themselves are i.i.d. and
distributed according to N(0, Id×d) conditioned on all coordinates being in [−t, t].

Since all remaining samples have the size of their coordinates bounded by t, the value of a given
monomial

∏d
j=1 x

αj

j of degree at most ∆ evaluated on any of them is in
[
−t∆, t∆

]
. Therefore,

the Hoeffding bound implies that for sufficiently large C4 with probability at least 1 − 1
100n∆ the

empirical average of
∏d

j=1 x
αj

j on the (at least N2

2
many) remaining samples is within 1

10n∆ of

Ex∼N(0,Id×d)

[
d∏

i=1

xαi
i

∣∣∣∣∀i : |xi| ≤ t

]
.

For sufficiently large C1, we verify the premise of Proposition 7 that t ∈
[
2
√
∆+ 1,+∞

)
and

therefore have∣∣∣∣∣Ex∼N(0,Id×d)

[
d∏

i=1

xαi
i

∣∣∣∣∀i : |xi| ≤ t

]
− Ex∼N(0,Id×d)

[
d∏

i=1

xαi
i

]∣∣∣∣∣ ≤ O
(
2∆∆

∆+2
2 t∆e−

t2

2

)
.

Now, we have d
dt

(
∆ log t− t2

2

)
= ∆

t
−twhich is negative when t >

√
∆. As t ≥ C1∆

(
ln∆
√
log d

)
>

√
∆, we have

t∆e−
t2

2 ≤
(
C1∆

(
ln∆

√
log d

))∆
exp

(
−
(
C1∆

(
ln∆
√
log d

))2
2

)
,

which together with the preceding inequality implies∣∣∣∣∣Ex∼N(0,In×n)

[
n∏

i=1

xαi
i

∣∣∣∣∀i : |xi| ≤ t

]
− Ex∼N(0,In×n)

[
n∏

i=1

xαi
i

]∣∣∣∣∣ ≤
O

(
2∆∆

∆+2
2

(
C1∆

(
ln∆

√
log n

))∆
exp

(
−
(
C1∆

(
ln∆
√
log n

))2
2

))

for sufficiently large C1 the above is less than 1
10n∆ . Therefore, in the whole, we have that the

empirical average of
∏d

j=1 x
αj

j in step 3 of T is with probability at least 1 − 1
100n∆ within 1

10n∆ of

13Proof:
∫ +∞
t

e−
x2

2 dx ≤ e−
t2

2

∫ +∞
t

e−
t(x−t)

2 dx ≤ 2e−
t2

2

t ≤ O
(
e−

t2

2

)
.

40

Ex∼N(0,Id×d)

[∏d
i=1 x

αi
i

]
. Taking a union bound over all monomials

∏d
j=1 x

αj

j of degree at most ∆,

we see that the step 3 of the tester T also passes with probability at least 1− 1
100

when it is run on
N(0, Id×d).

Overall, we conclude that the probability T outputs No when given samples from N(0, Id×d) is
at most 3

100
< 0.1 as promised.

Now, we shall show that T will likely output No if any of the conditions given in the proposition
hold.

If Condition (a) holds, we have Prx∈RD [∃i ∈ [d] : |xi| > t] > ϵ
5
, then there is some coordinate

i for which Prx∈RD [|xi| > t] > ϵ
5n

. This coordinate will lead to T outputting No in step 1 with
probability at least 1− 1

100
.

Now, suppose condition (a) doesn’t hold so we Prx∈RD [∃i ∈ [d] : |xi| > t] ≤ ϵ
5

but condition
(b) or (c) does hold. We would like to show that T will still likely output No. With a very loose
application of the Hoeffding bound, for sufficiently large C4 with probability at least 1− 1

100
only at

most half of the samples are discarded in the step 2 of T , which we also assume henceforth. Using
the Hoeffding bound again, we see that for sufficiently large C4 with probability at least 1 − 1

100

the empirical expectation of all monomials
∏d

j=1 x
αj

j of degree at most ∆ is within 1
10n∆ of

Ex∈RD

[
d∏

i=1

xαi
i

∣∣∣∣∀i ∈ [d] : |xi| ≤ t

]
.

In other words, with probability at least 1− 1
100

the tester T will output No in step 3, unless we
have for all monomials

∏d
j=1 x

αj

j that∣∣∣∣∣Ex∈RD

[
d∏

i=1

xαi
i

∣∣∣∣∀i ∈ [d] : |xi| ≤ t

]
− Ez∼N(0,Id×d)

[
d∏

j=1

x
αj

j

]∣∣∣∣∣ ≤ 1

2n∆
+

1

10n∆
=

3

5n∆
.

So, to finish the proof, it is enough to show that the inequality above cannot hold if Condition (b)
or Condition (c) holds. This follows from the low degree moment lemma for distributions(Lemma
1), for a sufficiently large choice of B, thereby finishing the proof14.

Finally, we can use the two propositions above to finish the proof of Theorem 2. Bounds on
run-time have been shown earlier, so now we need to show correctness. That requires us to show
the following two conditions:

1. (Soundness) If, given access to i.i.d. labeled samples (x, y) distributed according to Dpairs,
the algorithm T outputs “Yes” with probability at least 1/4, then A will with probability at
least 0.9 output a circuit computing a function f̂ , such that

Pr(x,y)∈RDpairs [y ̸= f̂(x)] ≤ min
f∈halfspaces

(
Pr(x,y)∈RDpairs [f(x) ̸= y]

)
+O (ϵ) .

14To be explicit: if condition (a) doesn’t hold but condition (b) or (c) does hold via union bound the probability that
T will fail to output No is at most 1

100 + 1
100 < 0.1 as required.

41

2. (Completeness) Given access to i.i.d. labeled samples (x, y) distributed according to Dpairs,
with x itself distributed as a Gaussian over Rd, tester T outputs “Yes” with probability at
least 3/4.

3. A is an agnostic learner for halfspaces over Rd under the Gaussian distribution.

Note that Condition 3 follows from the first two. The completeness condition (i.e. Condition
2) immediately follows from Proposition 9. The Soundness condition (i.e. Condition 1) follows
from Proposition 9 and Proposition 8 in following way. If T outputs “No” with probability less
than 3/4 then conditions (a), (b) and (c) in Proposition 9 should all be violated. This allows us to
use Proposition 8 to conclude that A is an agnostic (O (ϵ) , 0.1)-learner for the function class of
linear threshold functions over Rd under distribution D, where D is the marginal distribution of x
when (x, y) distributed according to Dpairs. This implies the Soundness condition (i.e. Condition 1
above) and finishes the proof of Theorem 2.

1.7 Tester-learner pairs for agnostically learning halfspaces
under the uniform distribution over Boolean cube.

1.7.1 The tester-learner pair.

Tester-learner pair for learning halfspaces over {0, 1}d:

• Let C1 be a sufficiently large constant to be tuned appropriately. Also define k := 1
50ϵ4

ln4 1
ϵ
.

• Learning algorithmABoolean. Given access to i.i.d. labeled samples (x, y) ∈ {±1}d×{±1}
from an unknown distribution:

– Use the algorithm of Theorem 1 (that came from [KKMS08]), with error parameter
C1ϵ, allowed failure probability 1

10
, and taking the set of {gi} to be the set of monomials

of degree at most 20
ϵ4
ln2 1

ϵ
, i.e. the set

{∏d
j=1 x

αj

j :
∑

j αj ≤ 20
ϵ4
ln2 1

ϵ

}
(with all αj ∈

{0, 1} because xk are in {±1}) .

• Testing algorithm TBoolean. Given access to i.i.d. labeled examples x ∈ {±1}d from an
unknown distribution:

1. Use a tester from literature (see [OZ18, AAK+07, AGM03]) for testing k-wise inde-
pendent distributions against distributions that are d−

42
ϵ4

ln2(1
ϵ)-far from k-wise indepen-

dent.

2. Output the same response as the one given by the k-wise independence tester.

Theorem 4 (Tester-learner pair for learning halfspaces under uniform distribution on {±1}d).
Suppose the value C present in algorithmABoolean is chosen to be a sufficiently large absolute con-
stant, also assume d and 1

ϵ
are larger than some sufficiently large absolute constants. Then, the

42

algorithmABoolean is an agnostic (O(ϵ), 0.1)-learner for the function class of linear threshold func-
tions over {±1}d under the uniform distribution and the algorithm TBoolean is an assumption tester
for ABoolean. The algorithms ABoolean and TBoolean both require only dÕ(

1
ϵ4
) samples and run-time.

Additionally, the tester TBoolean is label-oblivious.

The testers from the literature for k-wise independence take dO(k)/η2 samples and run-time to
distinguish a k-wise independent distribution and a distribution that is η-far from k-wise indepen-
dent (see [OZ18, AAK+07, AGM03]). Thus, the run-time of tester TBoolean is dÕ(1/ϵ4). The same
run-time bound of dÕ(1/ϵ4) for ABoolean follows from Theorem 1.

The only thing remaining to prove is that the algorithmABoolean is indeed a (O(ϵ), 0.1)-agnostic
learning algorithm for the class of halfspaces on {±1}d with respect to distributions D that are
d−

42
ϵ4

ln2(1
ϵ)-close to k-wise independent. By Theorem 1 (that came from [KKMS08]), this follows

from the following proposition:

Proposition 17 (low-degree approximation). Let sign(v · x− θ) be an arbitrary halfspace, v
be normalized to be a unit vector, and let k := 1

50ϵ4
ln4 1

ϵ
. Also let D be a distribution that is

d−
42
ϵ4

ln2(1
ϵ)-close in TV distance to k-wise independent. Then, there is a polynomial P of degree

20
ϵ4
ln2 1

ϵ
for which

Ex∼D [|P (x)− sign(v · x− θ)|] = O(ϵ)

The remaining subsections are dedicated to proving Proposition 17 which finishes the proof of
Theorem 4.

1.7.2 Proving that halfspaces are well-approximated by low-degree polyno-
mials under distributions close to k-wise independent.

Basic facts.

We now present some basic facts and definitions.

Definition 4 (From [DGJ+10]). We say that the halfspace sign(v · x− θ) is ϵ-regular if for any i
we have |vi| / ∥v∥ ≤ ϵ.

The following is a standard corollary of the Berry-Esseen theorem (see for example Corollary
2.2 of [DGJ+10]).

Proposition 10. Suppose the halfspace sign(v · x− θ) is ϵ-regular, then for any interval [a, b] ⊂ R
we have

Prx∼{±1}d

[
v · x
∥v∥

∈ [a, b]

]
≤ |b− a|+ 2ϵ.

We will also need the fact about the concentration properties of a k-wise independent distribu-
tion on {±1}d, when it is projected to an arbitrary direction.

43

Proposition 11. Suppose D is a k-wise independent distribution over {±1}d. Then, for any unit
vector v ∈ Rd and even integer s ∈ [2, k], we have

(Ex∼D [(v · x)s])1/d ≤ 2
√
s,

Proof. Since d ≤ k and D is k-wise independent, we have

Ex∼D [(v · x)s] = Ex∼{±1}d [(v · x)s] .

The standard Hoeffding bound tells us that for any t ∈ R

Prx∼{±1}d [|v · x| ≥ t] ≤ 2e−t2/2.

Therefore

Ex∼{±1}n
[
(v · x)d

]
= Ex∼{±1}n

[∫ ∞

τ=0

dτ d−1
1|v·x|>τ dt

]
=

=

∫ ∞

0

dτ d−1Prx∼{±1}n [|v · x| > τ] dτ︸ ︷︷ ︸
Via linearity of expectation and Tonelli’s theorem.

≤ 2

∫ ∞

0

dτ d−1e−τ2/2 dτ =

√
2π · d · Eτ∼N(0,1)

[
|τ |d−1

]
=
√
2π · d ·

√
2

π
(d− 2)!! = 2d!! ≤ 2dd/2.

This directly implies the statement we were seeking to prove.

Re-using the polynomial from Section 1.5.2.

We will use the polynomial constructed in Section 1.5.2, which we designed to approximate
well the function 1[y,y+ϵ]. We now summarize its properties

Proposition 12. For every y ∈ R, ϵ ∈ (0, 1], define

g(z) :=



0 if z ≤ y − ϵ,
z−(y−ϵ)

ϵ
if z ∈ [y − ϵ, y] ,

1 if z ∈ [y, y + ϵ] ,
(y+2ϵ)−z

ϵ
if z ∈ [y + ϵ, y + 2ϵ] ,

0 if z ≥ y + 2ϵ.

Then, for any w ∈ R>1, there exists a polynomial P0 of degree s = O(w/ϵ2), such that for any
x ∈ [−w,w] we have |g(x)− P0(x)| ≤ ϵ. Additionally, each coefficient of P0 has a magnitude of
at most s3s.

44

Proof of Proposition 17

First, we show that k-wise independent distributions are anti-concentrated when projected onto
regular vectors.

Proposition 13. Suppose the halfspace sign(v · x− θ) is ϵ-regular, v is normalized to be a unit
vector, and let k := 1

100ϵ4
ln4 1

ϵ
. Then, for any k-wise independent distribution D we have for every

y ∈ R that
Prx∼D [v · x ∈ [y, y + ϵ]] = O(ϵ)

Proof. We take w := 1
ϵ2
ln2 1

ϵ
, and WLOG assume that ϵ is small enough that w > 1. Let P0 be as

in Proposition 12. First, we would like to bound
∣∣Ex∼D

[
P0 (v · x)1|v·x|>w

]∣∣. To do this, first we
observe that by combining Proposition 11 and Proposition 2 we have

max
i∈{0,··· ,s}

Ex∈RD

[
|v · x|i 1|x|>w

]
≤ 2wd

(
2
√
k

w

)k

.

Each coefficient of P0 is bounded by s3s, this means that

|Ex∼D [P0 (v · x)1z>w]| ≤ 2s23sws

(
2
√
k

w

)k

≤ O

4sws

(
2
√
k

w

)k
 . (1.2)

Repeating the exact same argument above for the uniform distribution over {±1}d (in place of
D) we also get ∣∣Ex∼{±1}d [P0 (v · x)1z>w]

∣∣ ≤ O

4sws

(
2
√
k

w

)k
 . (1.3)

Now, we consider the region inside [−w,w]. We have

5ϵ

By Proposition 10.︷ ︸︸ ︷
≥ Prx∼{±1}d [v · x ∈ [y − ϵ, y + 2ϵ]]

Because on [−w,w] we have P0(z) ≤ 1[y−ϵ,y+2ϵ] + ϵ︷ ︸︸ ︷
≥ Ex∼{±1}d [P0 (v · x)1z≤w]− ϵ (1.4)

Similarly, we also have

Ex∼D [P0 (v · x)1z≤w]

Because on [−w,w] we have P0(z) ≥ 1[y,y+ϵ] − ϵ︷ ︸︸ ︷
≥ Prx∼D [v · x ∈ [y, y + ϵ]]− ϵ . (1.5)

Taking together Equation (1.2), Equation (1.3), Equation (1.4) and Equation (1.5) we get

Prx∼D [v · x ∈ [y, y + ϵ]] ≤ O(ϵ) +O

4sws

(
2
√
k

w

)k
 .

45

Substituting k = 1
100ϵ4

ln4 1
ϵ
, s = O(w/ϵ2) and w = 1

ϵ2
ln2 1

ϵ
we now get

Prx∼D [v · x ∈ [y, y + ϵ]] ≤ O(ϵ) +O

(
4sws−k

(
2
√
k
)k)

= O(ϵ)

Now, we use the proposition we just proved to show that, with respect to k-wise indepen-
dent distributions, low-degree polynomials approximate well halfspaces whose normal vectors are
regular.

Proposition 14. Suppose the halfspace sign(v · x− θ) is ϵ-regular, v is normalized to be a unit
vector, and let k := 1

100ϵ4
ln4 1

ϵ
. Then, for any k-wise independent distribution D we have a poly-

nomial P of degree s := 1
4ϵ4

ln2
(
1
ϵ

)
for which

Ex∼D [|P (x)− sign(v · x− θ)|] = O(ϵ)

Additionally, each coefficient of polynomial P is bounded by (4n)s in absolute value.

Proof. We combine Proposition 11 and Proposition 13 with Lemma 2. In Lemma 2, we have
α = O(ϵ), s0 = k and β = 2

√
s0. Overall, from the conclusion of Lemma 2 it follows that for

some polynomial P (x) = Q(v · x) it is indeed the case that

Ex∼D [|P (x)− sign(v · x− θ)|] = O(ϵ).

The degree of the polynomial P is 2β
ϵ2

+ 1 which is at most 1
4ϵ4

ln2
(
1
ϵ

)
for sufficiently small ϵ.

Now, we need to bound the (multivariable) coefficients of P . To do this, fix a specific mul-
tivariable term and track how much it can grow as we open the parentheses for Q(v · x). As all
coordinates of unit vector v are bounded by 1, every time we open the parentheses for a term of
form ci(v · x)i, it can contribute at most |ci| di to the absolute value of any specific coefficient of
P . As we know that every single-variable coefficient ci of Q is bounded by s3s, we get an overall
bound of s(3n)s ≤ (s4n)s on each multivariate coefficient of P .

Consequently, we use ideas similar to the ones in [DGJ+10] in order to reduce the case of
general halfspaces to the case of halfspaces whose normal vectors are regular.

Proposition 15. Let sign(v · x− θ) be an arbitrary halfspace, v be normalized to be a unit vector,
and let k := 1

50ϵ4
ln4 1

ϵ
. Then, for any k-wise independent distribution D we have a polynomial P

of degree 20
ϵ4
ln2 1

ϵ
for which

Ex∼D [|P (x)− sign(v · x− θ)|] = O(ϵ)

Additionally, each coefficient of the polynomial P has a magnitude of at most d
20
ϵ4

ln2(1
ϵ).

46

Proof. Without loss of generality, we assume that the values of v are in decreasing order (i.e.
vi ≥ vi+1). We use the notation σi =

√∑
j>i v

2
i . The critical index ℓ(ϵ) is defined as the smallest

i for which vi ≤ ϵσi. We set ℓ0 =
8 log2(10/ϵ)

ϵ2
and consider two cases: (i) ℓ(ϵ) ≤ ℓ0 and (ii) ℓ(ϵ) > ℓ0.

Suppose ℓ(ϵ) ≤ ℓ0, then write the vector v as the concatenation of two vectors vhead in Rℓ(ϵ)

and vhead in Rd−ℓ(ϵ). Analogously a vector x in {±1}d can be broken down into xhead in {±1}ℓ(ϵ)
and xhead in {±1}d−ℓ(ϵ). For any fixed value of xhead, the condition ℓ(ϵ) ≤ ℓ0 directly implies
that the halfspace sign(vhead · xhead + vtail · xtail − θ) is a regular halfspace. Since D is a k-wise
independent distribution, when one conditions on a specific value of xhead, the resulting distribu-
tion over xtail is k − ℓ0-wise independent. Therefore by Proposition 14 there is some polynomial
Pxhead(vtail · xtail) of degree 1

4ϵ4
ln2
(
1
ϵ

)
for which we have:

Ex∼D

[
|Pxhead(vtail · xtail)− sign(vhead · xhead + vtail · xtail − θ)|

∣∣∣∣xhead

]
= O(ϵ).

This means, that if we take our polynomial P to map x = (xhead,xtail) to
∑

x0∈{±1}ℓ(ϵ)(1xhead=x0 ·
Px0(xtail)) then we will overall have:

Ex∼D [|P (x)− sign(v · x− θ)|] = O(ϵ).

Since the indicators 1xhead=x0 have degree of at most ℓ0, the polynomial P has a degree of at most
ℓ0 +

1
4ϵ4

ln2
(
1
ϵ

)
, which is at most 20

ϵ4
ln2 1

ϵ
for sufficiently small ϵ as required.

Let us bound the coefficients of P . For each fixed x0, we know that the coefficients of
Px0(xtail)) are bounded by (4n)

1
4ϵ4

ln2(1
ϵ). Each coefficient of 1xhead=x0 is bounded by 1

2l
(this

follows by explicitly writing out this polynomial). Overall, (since the variables in Px0(xtail)) and
1xhead=x0 are disjoint) we see that each coefficient of 1xhead=x0 · Px0(xtail) is bounded in absolute
value by (4n)

1
4ϵ4

ln2(1
ϵ)/2l. Summing this over all x0, we see that every coefficient of P is then at

most (4n)
1

4ϵ4
ln2(1

ϵ) in absolute value. (This is at most d
20
ϵ4

ln2(1
ϵ) for sufficiently small ϵ).

This concludes our consideration of the case ℓ(ϵ) ≤ ℓ0, and the rest of the proof examines the
case ℓ(ϵ) > ℓ0.

Suppose we have ℓ(ϵ) > ℓ0. Similar to before, we break the vector v into vhead in Rℓ0 and vtail

in Rd−ℓ0 and the vector x in {±1}d into xhead in {±1}tail and xℓ0 in {±1}d−ℓ0 . The polynomial
we shall use to approximate the halfspace will now depend entirely on xhead. Specifically, it will
make the natural best guess at sign(vhead · xhead + vtail · xtail − θ) given only xhead, i.e. we have
P mapping x = (xhead,xtail) to

∑
x0∈{±1}ℓ0 (1xhead=x0 · sign(vhead · x0 − θ)). Since the indicators

1xhead=x0 have degree of ℓ0, the polynomial also has a degree of at most ℓ0. Each of the indicators
1xhead=x0 has coefficients equal to 1

2ℓ0
in absolute value, and there at most dℓ0 of these indicator

polynomials. Therefore, each coefficient of P is can be bounded by dℓ0 in absolute value.
We now want to argue that P has a small error. We will use the following proposition that is

implicit in the proof of Theorem 5.4 of [DGJ+10].

Proposition 16. For ℓ0 = 8 log2(10/ϵ)
ϵ2

, suppose D is a (ℓ0 + 2)-wise independent distribution over

47

{±1}d, sign(v · x− θ) is a halfspace with critical index ℓ(ϵ) > ℓ0. Also suppose v is a unit vector
and its coordinates of v are in descending order, and break v into vhead in Rℓ0 and vhead in Rd−ℓ0

and the vector x in {±1}d into xhead in {±1}ℓ0 and xℓ0 in {±1}d−ℓ0 . Then we have

Prx∼D [sign(v · x− θ) ̸= sign(vhead · xhead − θ)] = O(ϵ)

Now, when sign(v · x · xtail − θ) = sign(vhead · xhead − θ) our polynomial has error zero, and
when sign(v · x · xtail − θ) ̸= sign(vhead · xhead − θ) our polynomial has an error of 2. Overall, this
means that indeed

Ex∼D [|P (x)− sign(v · x− θ)|] = O(ϵ).

Finally, we move from distributions that are k-wise independent to distributions that are merely
close to k-wise independent, which concludes this line of reasoning.

Proposition 17 (low-degree approximation). Let sign(v · x− θ) be an arbitrary halfspace, v
be normalized to be a unit vector, and let k := 1

50ϵ4
ln4 1

ϵ
. Also let D be a distribution that is

d−
42
ϵ4

ln2(1
ϵ)-close in TV distance to k-wise independent. Then, there is a polynomial P of degree

20
ϵ4
ln2 1

ϵ
for which

Ex∼D [|P (x)− sign(v · x− θ)|] = O(ϵ)

Proof. Let D′ be the closest in TV distance k-wise independent distribution to D. We have

dTV(D,D
′) ≤ d−

42
ϵ4

ln2(1
ϵ).

By Proposition 15, we have a a polynomial P of degree 20
ϵ4
ln2 1

ϵ
for which

Ex∼D′ [|P (x)− sign(v · x− θ)|] = O(ϵ) (1.6)

To move from D to D′ we use the following observation that follows immediately from the
definition of TV distance

Observation 6. Let φ be some function {±1}d → R and suppose φ is bounded everywhere by B
in absolute value. Let D and D′ be two probability distributions over {±1}d. Then

|Ex∼D[φ]− Ex∼D′ [φ]| ≤ B · dTV(D,D
′)

The polynomial P (x) has at most d
20
ϵ4

ln2(1
ϵ) terms each of which has a coefficient of magni-

tude at most d
20
ϵ4

ln2(1
ϵ). As each of the terms always evaluates to ±1 anywhere on {±1}d, the

absolute value of P is bounded by d
40
ϵ4

ln2(1
ϵ). For all sufficiently small ϵ we therefore have that

48

|P (x)− sign(v · x− θ)| ≤ d
41
ϵ4

ln2(1
ϵ). This, together with the observation above gives us that

|Ex∼D[|P (x)− sign(v · x− θ)|]− Ex∼D′ [|P (x)− sign(v · x− θ)|]| ≤

n
41
ϵ4

ln2(1
ϵ)dTV(D,D

′) ≤ n
41
ϵ4

ln2(1
ϵ)n− 42

ϵ4
ln2(1

ϵ) = O(ϵ)

Combining this with Equation (1.6) we finish the proof.

1.8 Lower bounds on testable agnostic learning complexity.

In this section we present sample lower bounds for tester-learner pairs for (i) learning convex
sets under Gaussian distribution in Rd (ii) learning monotone functions under uniform distribution
over {0, 1}d.

1.8.1 Theorem statements.

The following theorem implies that there is no tester-learner pair for agnostic learning convex
sets under the standard Gaussian distribution with combined sample complexity of 2o(d).

Theorem 5. For all sufficiently large d, the following is true. SupposeA is an algorithm that given
sample-label pairs {(xi, yi)} ⊂ Rd × {±1} outputs a function f̂ : Rd → {±1}. Also, suppose
T is a tester that given access to i.i.d. labeled points {(xi, yi)} ⊂ Rd × {±1} outputs “Yes” or
“No”. Suppose whenever the points {xi} are themselves distributed i.i.d. from N (0, Id×d), tester
T outputs “Yes” with probability at least 1− δ2. Also suppose the combined sample complexity of
A and T is at most N := 20.01n. Then, there is a distribution Dpairs on Rd × {±1} such that

• There is a function f0 : Rd → {±1}, for which {x : f0(x) = 1} is a convex set and

Pr(x,y)∼Dpairs [f0(x) = y] = 1

In other words, it predicts the label perfectly.

• The tester T , given samples from Dpairs, accepts with probability at least 1− δ2 − 1
2Ω(d) .

• The learner A, given samples from Dpairs, outputs a predictor f̂ whose expected advantage
over random guessing is at most 1

2Ω(d) .

The following theorem implies that there is no tester-learner pair for agnostic learning mono-
tone functions under uniform distribution over {0, 1}d with combined sample complexity of 2o(d).
Recall that a function f0 : {0, 1}d → {±1} is monotone if f0(x1) ≥ f0(x2) whenever each
coordinate of x1 is at least as large as the corresponding coordinate of x2.

Theorem 6. For all sufficiently large d, the following is true. SupposeA is an algorithm that given
sample-label pairs {(xi, yi)} ⊂ {0, 1}d × {±1} outputs a function f̂ : {0, 1}d → {±1}. Also,

49

suppose T is a tester that given access to i.i.d. labeled points {(xi, yi)} ⊂ {0, 1}d×{±1} outputs
“Yes” or “No”. Suppose whenever the points {xi} are themselves distributed i.i.d. uniformly over
{0, 1}d, tester T outputs “Yes” with probability at least 1− δ2. Also suppose the combined sample
complexity ofA and T is at mostN := 20.01n. Then, there is a distributionDpairs on {0, 1}d×{±1}
such that

• There is a monotone f0 : {0, 1}d → {±1} for which Pr(x,y)∼Dpairs [f0(x) = y] = 1. In other
words, it predicts the label perfectly.

• The tester T , given samples from Dpairs, accepts with probability at least 1− δ2 − 1
2Ω(d) .

• The learner A, given samples from Dpairs, outputs a predictor f̂ whose expected advantage
over random guessing is at most 1

2
Ω

(
d

log2 d

) .

1.8.2 Technical lemmas about behavior of testing and learning algorithms.

In this section we show lemmas that are helpful to show inability of testing and learning algo-
rithms to perform well under certain circumstances. Roughly, the following lemma says that one
can “fool” a tester for a specific distribution D by replacing it by a uniform sample from a set S of
sufficiently large size, where each element in S is a uniform sample from D.

Lemma 3. Let D be some fixed distribution over U . Suppose that a tester T outputs “Yes” with
probability at least 1 − δ2 whenever given access to i.i.d. labeled samples (x, y) ∈ U × {±1}
distributed according to Dpairs, such that x itself is distributed according to D. Furthermore,
suppose the number of samples consumed by T is at most N . Fix some function g : U → {±1}
and let S be a random multiset of M i.i.d. elements drawn from D. Then, with probability at least
1−∆ over the choice of S we have

Pr x1,··· ,xN∼S
randomness of T

[T ((x1, g(x1)) , · · · , (xN , g(xN))) = “Yes”] ≥ 1− δ2 −
N2

M
− N√

∆M
.

Proof. Let the elements of the multiset S be (z1, · · · , zM), which recall are i.i.d. from D. Let
(zi1 , · · · , ziN) be sampled i.i.d. from S. We have

Pr [T accepts given ((zi1 , g (zi1)) , · · · , (ziN , g (ziN))) |S = (z1, · · · , zM)] ≥
Pr [T accepts given ((zi1 , g (zi1)) , · · · , (ziN , g (ziN))) |S = (z1, · · · , zM) ,∀j1 ̸= j2 : ij1 ̸= ij2] ·

· Pr [∀j1 ̸= j2 : ij1 ̸= ij2]︸ ︷︷ ︸
≥1−N2

M
, via birthay-paradox argument

≥

(
1− N2

M

)
Pr [T accepts given ((zi1 , g (zi1)) , · · · , (ziN , g (ziN))) |S = (z1, · · · , zM) ,∀j1 ̸= j2 : ij1 ̸= ij2]

In expectation, for the above probability we have

50

Pr [T accepts given ((zi1 , g (zi1)) , · · · , (ziN , g (ziN)))] ≥

≥
(
1− N2

M

)
(1− δ2) ≥ 1− δ2 −

N2

M
,

because the conditioning on ij1 and ij2 being all distinct results in feeding T with i.i.d. uniform
sample-label pairs for which we know the acceptance probability is at least 1 − δ2, as given in
the premise of the claim. Having bound the expectation of this probability, let us now bound its
variance. Define

paverage :=

ES [Pr [T accepts given ((zi1 , g (zi1)) , · · · , (ziN , g (ziN))) |S = (z1, · · · , zM) ,∀j1 ̸= j2 : ij1 ̸= ij2]]

We have

ES

[(
Pr [T accepts given ((zi1 , g (zi1)) , · · · , (ziN , g (ziN))) |S = (z1, · · · , zM) ,∀j1 ̸= j2 : ij1 ̸= ij2]−

paverage

)2]
= E [(Pr [T accepts given {(zk1 , g (zk1)) , · · · , (zkN , g (zkN))}]− paverage)] ·

· (Pr [T accepts given {(zl1 , g (zl1)) , · · · , (zlN , g (zlN))}]− paverage)

where {k1, · · · , kNtester} and {ℓ1, · · · , ℓNtester} are picked as i.i.d. uniform subsets of {1, · · · , Nsupport},
with Ntester elements each.

Now, if it happens that {k1, · · · , kNtester} and {ℓ1, · · · , ℓNtester} are disjoint, then
{
zk1 , · · · , zkN

}
are independent from {zℓ1 , · · · , zℓN}, and we check that the expectation above is then zero. Over-
all, this means that the expression above is upper-bounded by the probability that {k1, · · · , kNtester}
and {ℓ1, · · · , ℓNtester} have a non-zero intersection. Using a standard birthday-paradox argument,
this is at most N2

M
.

Overall, over the choice of S, the quantity

Pr [T accepts given ((zi1 , g (zi1)) , · · · , (ziN , g (ziN))) |S = (z1, · · · , zM) ,∀j1 ̸= j2 : ij1 ̸= ij2]

has an expectation of at least 1−δ2− N2

M
and standard deviation of at most N√

M
, so by Chebyshev’s

inequality it is at least 1 − δ2 − N2

M
− N√

∆M
with probability at least 1 −∆. This means that with

probability at least 1−∆ we have

Pr [T accepts given ((zi1 , g (zi1)) , · · · , (ziN , g (ziN)))] ≥ 1− δ2 −
N2

M
− N√

∆M
.

51

The following lemma says that if a function is “random enough”, then a learning algorithm will
not be able to get a non-trivially small error given few example-label pairs.

Lemma 4. Let A be an algorithm that takes N samples {(xi, yi)} with xi ∈ {1, · · · ,M} and
yi ∈ {±1} and outputs a predictor f̂ : {1, · · · ,M} → {±1}. Let g : {1, · · · ,M} → {±1} be
a random function, such that (i) g has some predetermined (and possibly given to algorithm A)
values on some fixed subset of {1, · · · ,M} , which comprises an at most φ fraction of {1, · · · ,M}
(ii) g is i.i.d. uniformly random in {±1} on the rest of {1, · · · ,M}. Upon receiving N labeled
samples {(xi, g(xi))} with {xi} distributed i.i.d. uniformly on {1, · · · ,M}, let the algorithm A
output a predictor f̂ . Then, for sufficiently large M we have

Eg, {xi}, randomness of A

[∣∣∣∣Prx∈R{1,··· ,M}

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣] ≤ 3

2

(
φ+

N

M

)
+ 5

√
lnM

M
.

Proof. Write {1, · · · ,M} as a union of two disjoint sets S and S, where S contains (i) the φM or
fewer elements of {1, · · · ,M} on which g is predetermined and (ii) the N or fewer elements of
{1, · · · ,M} that the learner A encountered among the labeled samples {(xi, g(xi))}. So, we have
|S| ≤ N + φM . We can write

Prx∈R{1,··· ,M}

[
f̂(x) ̸= g(x)

]
= Ex∈R{1,··· ,M}

[
1f̂(x)̸=g(x)1x∈S

]
+ Ex∈R{1,··· ,M}

[
1f̂(x)̸=g(x)1x/∈S

]
,

which means∣∣∣∣Prx∈R{1,··· ,M}

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣ ≤∣∣∣∣∣Ex∈R{1,··· ,M}

[
1f̂(x)̸=g(x)1x∈S

]
+ Ex∈R{1,··· ,M}

[
1f̂(x)̸=g(x)1x∈S

]
−
∣∣S∣∣
2M
− |S|

2M

∣∣∣∣∣ ≤∣∣∣∣∣Ex∈R{1,··· ,M}

[
1f̂(x)̸=g(x)1x/∈S

]
−
∣∣S∣∣
2M

∣∣∣∣∣+ 3 |S|
2M

≤∣∣∣∣∣Ex∈R{1,··· ,M}

[
1f̂(x)̸=g(x)1x∈S

]
−
∣∣S∣∣
2M

∣∣∣∣∣+ 3

2

(
φ+

N

M

)
=∣∣S∣∣

M

∣∣∣∣Ex∈RS

[
1f̂(x)̸=g(x)

]
− 1

2

∣∣∣∣+ 3

2

(
φ+

N

M

)
Note that f̂ depends only on (i) S, (ii) values of g on S and (iii) the internal randomness of
A. This means that even conditioned on f̂(x), the values of g on S are i.i.d. In other words,
Ex∈RS

[
1f̂(x)̸=g(x)

]
is distributed as the average of

∣∣S∣∣ i.i.d. random variables, each of which is

52

uniformly random in {0, 1}. A Hoeffding bound argument then implies that for any ϵ ∈ [0, 1]

Eg, {xi}, randomness of A

[∣∣∣∣Ex∈RS

[
1f̂(x)̸=g(x)

]
− 1

2

∣∣∣∣] ≤ ϵ+ 2e−2ϵ2|S|,

and taking ϵ =
√

ln|S|
2|S| ,we get

Eg, {xi}, randomness of A

[∣∣∣∣Ex∈RS

[
1f̂(x) ̸=g(x)

]
− 1

2

∣∣∣∣] ≤
√

ln
∣∣S∣∣

2
∣∣S∣∣ + 2∣∣S∣∣ ≤ 5

√
lnM

M︸ ︷︷ ︸
Since M ≥

∣∣S∣∣ ≥ M/2

.

Overall, we get

Eg, {xi}, randomness of A

[∣∣∣∣Prx∈R{1,··· ,M}

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣] ≤ 5

√
lnM

M
+

3

2

(
φ+

N

M

)

1.8.3 Propositions to be used in proving Theorem 5.

We will need a result about concentration the norm of an d-dimensional standard Gaussian.
Roughly speaking, the norm is tightly concentrated within a O

(
d1/4

)
-neighborhood of

√
d. More

precisely, we use the following special case of Lemma 8.1 in [Bir01] (this reference contains a
complete short proof):

Lemma 5. Let X be a standard d-dimensional Gaussian, then for any α > 0 we have

Pr

[
|X|2 ≥ d+ 2

√
d ln

(
2

α

)
+ 2 ln

(
2

α

)]
≤ α

2
,

and

Pr

[
|X|2 ≤ d− 2

√
d ln

(
2

α

)]
≤ α

2
.

The following claim tells us that two independent Gaussian vectors are unlikely to be very
close to each other.

Claim 1. Let X1 and X2 be i.i.d. d-dimensional standard Gaussians. For all sufficiently large d,
and for any r > 0 we have

Pr [|X1 −X2| ≤ r] ≤ 8d
(
r2

d

)d/2

.

53

Proof. Probability density of a Gaussian is everywhere at most
(

1√
2π

)d
, and the volume of a ball

around X1 of radius r is πd/2

Γ(d
2
+1)

rd. Stirling’s approximation formula tells that for sufficiently large

d we have Γ
(
d
2
+ 1
)
≥
√
d
(

d
2e

)d/2. Therefore, for sufficiently large d

πd/2

Γ
(
d
2
+ 1
)rd ≤ 1√

d
(2eπ)d/2

(
r2

d

)d/2

≤ 18d
(
r2

d

)d/2

.

Overall, the probability that |X2 −X1| ≤ r is then at most
(

1√
2π

)d
18d
(

r2

d

)d/2
≤ 8d

(
r2

d

)d/2
,

which finishes the proof.

We will also need the following geometric observations for proving Theorem 5. In the follow-
ing, we will use conv (·, · · · , ·) to denote the convex hull of some number of objects. We will also
use Br to denote the ball {x : |x| ≤ r} in Rd.

Claim 2. Let X1 and X2 be points in Rd satisfying |X1| , |X2| ∈ [a, b] for some a > 0 and b > a.
Then, we have that if |X2 −X1| is greater than 2

√
b2 − a2, then the line segment connecting X1

and X2 intersects Ba.

Proof. We show the claim by arguing that if |X1| , |X2| ∈ [a, b] and the distance between the line
segment connecting X1 and X2 and origin is at least a, then |X2 −X1| is at most 2

√
b2 − a2. If

|X1| /∈ {a, b}, then one can add a small multiple of X1 −X2 to X1 and this will increase the
distance |X2 −X1|, while keeping the conditions satisfied. If |X2| /∈ {a, b}, analogous argument
applies. Therefore, without loss of generality |X1| , |X2| ∈ {a, b}. If both |X1| and |X2| equal to
a, the segment will get closer than a to origin, unless X1 = X2 and |X2 −X1| = 0. If both |X1|
and |X2| equal to b, then their distance is at most 2

√
b2 − a2. Finally, we need to consider the case

|X1| = a and |X2| = b (the case |X1| = b and |X2| = a is analogous). If X1 · (X2 −X1) < 0,
then for any sufficiently small κ we have |X1 + κ(X2 −X1)|2 = |X1|2 + κX1 · (X2 −X1) +
κ2 |(X2 −X1)| < |X1|2 , which means that sist(line segment connecting X1 and X2, origin) < a
contradicting one of the conditions. Therefore, X1 · (X2 −X1) ≥ 0. We have

b2 = |X2|2 = |X1 + (X2 −X1)|2 = |X1|2+|X2 −X1|2+X1 ·(X2 −X1) ≥ a2+|X2 −X1|2 .

Therefore, |X2 −X1| ≤
√
b2 − a2 in this case. Overall across the cases, |X2 −X1|is at most

2
√
b2 − a2.

The following claim says that if the line segment between two points x1 and x2 intersects the
ball Ba, then (i) the convex hull of x1 and Ba (ii) the convex hull of x2 and Ba have no non-trivial
intersection.

Claim 3. For any a > 0, let x1 and x2 be points in Rn and suppose x1, x2 /∈ Ba. Then, if the line
segment between x1 and x2 intersects Ba, then conv (xi1 ,Ba) ∩ conv (xi2 ,Ba) = Ba.

54

Proof. We argue that conv (X1,Ba) ∩ conv (X2,Ba) ̸= Ba implies that the distance between the
line segment connecting X1 and X2 and origin is greater than a. Indeed, let Z be a point in
conv (X1,Ba) ∩ conv (X2,Ba) and not in Ba. Then, since Ba is convex, the separating hyper-
plane theorem tells us that there is a hyperplane separating Z from Ba. Now, X1 cannot be on
the same side of the hyperplane as Ba, because this would mean that the hyperplane separates
Z from conv (X1,Ba). So, X1 has to be on the same side of the hyperplane as Z or be on the
hyperplane itself. The same argument tells us that X2 has to be on the same side of the hyper-
plane as Z or be on the hyperplane itself. Overall, Ba is on one side of the hyperplane while
any point on line segment connecting X1 and X2 is either on the other side or on the hyperplane
itself. Since Ba is closed, the distance between Ba and the hyperplane is positive. This means
sist(line segment connecting X1 and X2, origin) > a.

Claim 4. For any a > 0, let {xi}Mi=1 be a collection of points in Rd and suppose xi /∈ Ba for all
i. Also, suppose that for any distinct i1 and i2 the line segment between x1 and x2 intersects Ba.
Then,

conv (x1, · · · ,xM ,Ba) = conv (x1,Ba) ∪ conv (x2,Ba) ∪ · · · ∪ conv (xM ,Ba) .

Proof. The line segment from xi1 to xi2 can be decomposed into three contiguous nonempty dis-
joint regions, (i) the one in conv (xi1 ,Ba) \Ba (ii) the one in Ba (iii) the one in conv (xi2 ,Ba) \Ba.
This implies the following. Let βxi1 + (1 − β)xi2 , with β in [0, 1], be an element of this line
segment. If βxi1 + (1 − β)xi2 is in regions (i) or (ii) then we can write βxi1 + (1 − β)xi2 =
γxi1 + (1 − γ)q for some γ ∈ [0, 1] and some q ∈ Ba. If βxi1 + (1 − β)xi2 is in regions (ii) or
(iii) then we can write βxi1 +(1− β)xi2 = γxi2 +(1− γ)q for some γ ∈ [0, 1] and some q ∈ Ba.

Now, clearly
⋃

k conv (xk,Ba) ⊆ conv (x1, · · · ,xM ,Ba), so we only need to show the inclu-
sion in other direction. Let x be in conv (x1, · · · ,xM ,Ba), which means that

x = β0
1x1 + · · · β0

MxM + (1−
∑
k

β0
k)r

0 (1.7)

for some r0 ∈ Ba, β0
k ∈ [0, 1] and satisfying 1 −

∑
k β

0
k ∈ [0, 1]. Take any distinct i and j with

β0
i ̸= 0 and β0

j ̸= 0, then we use our earlier observation to get that one of the cases below holds.

β0
i

β0
i + β0

j

x1 +
β0
i

β0
i + β0

i

x2 =

{
γxi + (1− γ)q for some γ ∈ [0, 1] and some q ∈ Ba, or
γxj + (1− γ)q for some γ ∈ [0, 1] and some q ∈ Ba.

Regardless which of these cases holds, we can substitute it back in Equation 1.7 and get a new
expression

x = β1
1x1 + · · · β1

MxM + (1−
∑
k

β1
k)r

1,

where β1
i = 0 or β1

j = 0 and we still have βk ∈ [0, 1] for any k. Also, we still have (1−
∑

k β
1
k) ∈

55

[0, 1] and we have r1 =
(β0

i +β0
j)(1−γ)q+(1−

∑
k β0

k)r
0

(1−
∑

i β
1
k)

. We check that

(β0
i + β0

j)(1− γ) + (1−
∑
k

β0
k) = 1−

∑
k/∈{i,j}

β0
k − γ(β0

i + β0
j) = 1−

∑
k

β1
k,

which means that r1 is a convex combination of q and r0, and since q, r0 ∈ Ba this means that r1

is also in Ba.
Now, further observe that the argument above has the following extra property: β0

k = 0 for
some k /∈ {i, j}, we also have β1

k = 0. Therefore, if we use the argument above iteratively
to obtain values ({β2

k} , r2), ({β3
k} , r3) and so on, at every iteration the number of non-zero β

coefficients decreases. We can keep iterating as long as there is a pair βℓ
i′ and βℓ

j′ both of which are
nonzero, and we will terminate in M iterations or less. Thus, as we terminate we have

x = βM
i0
xi0 +

(
1− βM

i0

)
rM

with βM
i0
∈ [0, 1] and rM ∈ Ba. This means that x ∈ conv (xi0 ,Ba) ⊆

⋃
k conv (xk,Ba) finishing

the proof.

1.8.4 Proofs of main hardness theorems (theorems 5 and 6).

Proof of Theorem 5. Let δ, ∆, α and M be real-valued parameters to be chosen later. By Lemma

5 we have Prx∈RN (0,Id×d) [|x2| /∈ [a, b]] ≤ α, where we denote b =

√
d+ 2

√
d ln

(
2
α

)
+ 2 ln

(
2
α

)
and a =

√
d− 2

√
d ln

(
2
α

)
.

We want to set our parameters in such a way that there is a distribution D′ over Rd and a
function g : Rd → {±1} with the following properties:

1. D′ is uniform over M distinct elements {z1, · · · , zM} of Rd.

2. A sample x from D′ with probability at least 1− 2α has |x| ∈ [a, b].

3. Suppose x1 and x2 belong to the support of D′ and both |x1| and |x2| are in [a, b]. Then
|x1 − x2| > 2

√
b2 − a2 and the line segment connecting x1 and x2 intersects Ba.

4. Given N samples of the form (xj, g(xj)) with each xj i.i.d. from D′, the tester T accepts
with probability at least 1− δ.

5. Given N samples of the form (xj, g(xj)) with each xj i.i.d. from D′, the learner A outputs
a predictor f̂ for which

E{xi}, randomness of A

[∣∣∣∣Prx∈RD′

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣] ≤ 12α + 6
N

M
+ 24

√
lnM

M
.

56

Let D′ be uniform over a multiset S := {z1, · · · , zM} of elements drawn i.i.d. uniformly from
N (0, Id×d). Let g be a random function over Rd picked as follows:

• If |x| > b,then g(x) = 0.

• If |x| < a, then g(x) = 1.

• If |x| ∈ [a, b], then g(x) is chosen randomly in {±1} subject to the following conditions.

– For every x, we have Pr [g(x) = 0] = Pr [g(x) = 1] = 1
2
.

– For any collection of {xi}, such that any two distinct xi and xj are further away15

from each other than
√
b2 − a2, then {g(xi)} is a collection of i.i.d. random variables

uniform on {±1}.

One way to give an explicit construction of random function g satisfying conditions above is
to break the region {x ∈ Rs : |x| ∈ [a, b]} into finitely many disjoint parts of diameter at most√
b2 − a2 and have g be i.i.d. uniformly random in {±1} on each of these parts. Then, we have

1. Condition 1 is satisfied with probability 1, because N (0, Id×d) has continuous density.

2. By Lemma 5, for x drawn from N (0, Id×d), the probability that |x| /∈ [a, b] is at most α.
Then, another application of the standard Hoeffding bound shows that out of {z1, · · · , zM},
the fraction with norm outside of [a, b] is at most 2α with probability at most e−2α2M . In
other words, Condition 2 is satisfied with probability at least 1− e−2α2M .

3. Claim 1 tells us that distinct i and j the probability that |zi| , |zj| ∈ [a, b] and |zi − zj| ≤

2
√
b2 − a2 is at most 8d

(
b2−a2

d

)d/2
. Claim 2 then tells us that if |zi − zj| > 2

√
b2 − a2,

then the line segment connecting zi and zj intersects Ba. Taking a union bound over all
such distinct pairs (zi, zj), the probability of the Condition 3 being violated is at most 1 −

8d
(

4
√

d ln(2
α)+2 ln(2

α)
d

)d/2

M2.

4. Via Lemma 3 we see that with probability at least 1 − ∆ we have that given N samples
of the form (xj, g(xj)) with each xj i.i.d. from D′, the tester T accepts with probability
at least 1 − δ2 − N2

M
− N√

∆M
. So, to satisfy Condition 4, we need that δ − δ2 >

N2

M
and

∆ = N2

M
1(

δ−δ2−N2

M

)2 .

5. For any distinct zi and zj satisfying |zi| , |zj| ∈ [a, b], Condition 3 tells us that |zi − zj| >
2
√
b2 − a2. The way random function g was constructed then implies that the random vari-

ables {g(zi), i : |zi| ∈ [a, b]} is a collection of i.i.d. random variables uniform in {±1}. We

15The exact value of
√
b2 − a2 here does not matter. We could have taken it to be anything smaller than 2

√
b2 − a2.

57

can therefore use Lemma 4 as long as 2α < 1
4

and N ≤ M
4

and

Eg, {xi}, randomness of A

[∣∣∣∣Prx∼D′

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣] ≤ 3

2

(
2α +

N

M

)
+ 5

√
lnM

M
.

Therefore, with probability at least 1− 1
4

over the choice of g we have

E{xi}, randomness of A

[∣∣∣∣Prx∼D′

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣] ≤ 12α + 6
N

M
+ 20

√
lnM

M
.

Overall, the probability that all five of the conditions hold is non-zero as long as δ − δ2 > N2

M
and

e−2α2M + 8d

4
√
d ln

(
2
α

)
+ 2 ln

(
2
α

)
d

d/2

M2 +
N2

M

1(
δ − δ2 − N2

M

)2 +
1

4
< 1. (1.8)

From now on we fix g and D′ assuming the five conditions above hold (we will check that
the Equation 1.8 indeed holds when we pick our parameters). We claim that there is a function
f0 : Rd → {±1} such that (i) {x : f0(x) = 1} is a convex set (ii) Prx∼D′ [f0(x) = g(x)] = 1
(even though the function g itself is very likely not indicator of a convex body). Recall that D′

was uniform from S := {z1, · · · , zM} so we define f0 to be 1 on conv (Ba, {zi : g(zi) = 1}) and
0 otherwise. Property (i) is immediate from the definition of f0. To show property (ii), recall that
D′ is supported on {zi}, so we need to show that f0(zi) = g(zi) for every i.

• If g(zi) = 1, from definition of f0 it is immediate that f0(zi) = g(zi).

• If g(zi) = 0, we argue as follows. By Claim 3 we know that for any j ̸= i we have
conv (zi,Ba) ∩ conv (zj,Ba) = Ba which in particular implies zi /∈ conv (zj,Ba). So, zi is
not in

⋃
j: g(zj)=1 conv (zj,Ba), but

⋃
j: g(zj)=1 conv (zj,Ba) = conv ({zj : g(zj) = 1} ,Ba)

by Claim 4, so zi /∈ conv ({zj : g(zj) = 1} ,Ba) and therefore f0(zi) = 0 as required.

Finally, we get to picking the parameters. Recall that N = 20.01n. We take M = 20.1n and
δ = δ2 +

N2

M
+ 100 N√

M
= δ2 + 100 N

20.05n
+ N2

20.1n
, which allows us to conclude that the tester T ,

given samples (x, g(x)) with x ∼ D′, accepts with probability at least 1− δ2−100 N
20.05n

− N2

20.1n
=

1− δ2 − 1
2Ω(d) . We proceed to making sure Equation 1.8 is satisfied:

• We see that N2

M
1(

δ−δ2−N2

M

)2 = N2

M
1

10000N2

M

= 1
10000

.

• By taking α = 1
2
e−

d
160000 , we make sure that now e−2α2M + 8d

(
4
√

d ln(2
α)+2 ln(2

α)
d

)d/2

M2 =

2−Ω(d), so taking d sufficiently large we can make this expression as small as we want.

58

Thus, Equation 1.8 indeed holds for sufficiently large d for our choice of the parameters. We see
that our choice of parameters also satisfies the required condition δ − δ2 > N2

M
. Condition 5 tells

that the expected advantage of the predictor f̂ is at most

12α + 6
N

M
+ 20

√
lnM

M
= 6e−

d
160000 + 6

20.01n

20.1n
+

20
√
0.1n

20.005n
= 2−Ω(d).

Now, let’s prove our theorem about hardness of testable agnostic learning of monotone func-
tions.

Proof of Theorem 6. Let δ, ∆, α and M be real-valued parameters to be chosen later. Observe that

we have Prx∈{0,1}d
[
|x| /∈

[
d
2
−
√

d
2
ln 2

α

]]
≤ α, and denote hα :=

√
d
2
ln 2

α
. We want to set our

parameters in such a way that there is a distribution D′ over {0, 1}d and a function g : {0, 1}d →
{±1} with the following properties:

1. D′ is uniform over M distinct elements {z1, · · · , zM} of {0, 1}d.

2. A sample x fromD′ with probability at least 1−2α has hamming weight in
[
d
2
− hα, d2 + hα

]
.

3. Suppose x1 and x2 belong to the support of D′ and both x1 and x2 have hamming weight
in
[
d
2
− hα, d2 + hα

]
. Then x1 and x2 are incomparable (i.e. neither one dominates the other

one bit-wise).

4. Given N samples of the form (xj, g(xj)) with each xj i.i.d. from D′, the tester T accepts
with probability at least 1− δ.

5. Given N samples of the form (xj, g(xj)) with each xj i.i.d. from D′, the learner A outputs
a predictor f̂ for which

E{xi}, randomness of A

[∣∣∣∣Prx∈RD′

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣] ≤ 12α + 6
N

M
+ 20

√
lnM

M
.

We use the probabilistic method to show the existence of such D′ and g. Let D′ be uniform over a
multiset S := {z1, · · · , zM} of elements drawn i.i.d. uniformly from {0, 1}d. Let g be a random
function over {0, 1}d picked as

g(x) =


1 if |x| > d/2 + hα,

−1 |x| < d/2− hα,
i.i.d. uniformly random in {±1} otherwise.

Then, we have

59

1. Condition 1 is satisfied with probability at least 1 − M2

2d
by a standard birthday-paradox

argument.

2. By the standard Hoeffding bound, a uniform sample from {0, 1}d falls outside of
[
d
2
− hα, d2 + hα

]
with probability at most 2e−

2h2α
d = α. Then, another application of the standard Hoeffd-

ing bound shows that out of {z1, · · · , zM}, the fraction with Hamming weight outside of[
d
2
− hα, d2 + hα

]
is at most 2α with probability at most e−2α2M . In other words, Condition

2 is satisfied with probability at least 1− e−2α2M .

3. For distinct i1 and i2, we bound the probability probability of the event that (i) zi1 and zi2

have Hamming weight in
[
d
2
− hα, d2 + hα

]
and (ii) zi1 dominates zi2 bit-wise. Suppose zi1

indeed has Hamming weight in
[
d
2
− hα, d2 + hα

]
, then there are only at most d2hα possible

candidates for zi2 that will make the event to take place. Thus, the probability of this event

is at most d2hα

2d
= d

√
2n ln 2

α

2d
. Taking a union bound over all distinct pairs (zi1 , zi2), the

probability of the Condition 3 being violated is at most 1− d

√
2n ln 2

α

2d
M2.

4. Via Lemma 3 we see that with probability at least 1 − ∆ we have that given N samples
of the form (xj, g(xj)) with each xj i.i.d. from D′, the tester T accepts with probability
at least 1 − δ2 − N2

M
− N√

∆M
. So, to satisfy Condition 4, we need that δ − δ2 >

N2

M
and

∆ = N2

M
1(

δ−δ2−N2

M

)2 .

5. Via Lemma 4 we have

Eg, {xi}, randomness of A

[∣∣∣∣Prx∼D′

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣] ≤ 3

2

(
2α +

N

M

)
+ 6

√
lnM

M
.

Therefore, with probability at least 1− 1
4

over the choice of g we have

E{xi}, randomness of A

[∣∣∣∣Prx∼D′

[
f̂(x) ̸= g(x)

]
− 1

2

∣∣∣∣] ≤ 12α + 6
N

M
+ 24

√
lnM

M
.

Overall, the probability that all five of the conditions hold is non-zero as long as δ − δ2 > N2

M
and

M2

2d
+ e−2α2M +

d
√

2n ln 2
α

2d
M2 +

N2

M

1(
δ − δ2 − N2

M

)2 +
1

4
< 1. (1.9)

From now on, we assume that the five conditions above hold (we will check that the Equation
1.9 indeed holds when we pick our parameters). We claim that there is a monotone f0 : {0, 1}d →
{±1} for which Prx∼D′ [f0(x) = g(x)] = 1 (even though the function g itself is very likely not

60

monotone). Recall that D′ was uniform from S := {z1, · · · , zM} so we write

f0(x) =



1 if |x| > d/2 + hα,

−1 |x| < d/2− hα,
g(x) if |x| ∈ [d/2− hϵ, d/2 + hϵ] and x is in the support of D′,
−1 if |x| ∈ [d/2− hϵ, d/2 + hϵ] and x ⪯ y for some y in supp(D′) s.t. g(y) = −1,
1 if |x| ∈ [d/2− hϵ, d/2 + hϵ] and x ⪰ y for some y in supp(D′) s.t. g(y) = +1,
−1 otherwise.

The definition above is not self-contradictory, because Condition 3 says if x1 and x2 belong to the
support of D′ and both x1 and x2 have hamming weight in

[
d
2
− hα, d2 + hα

]
, then x1 and x2 are

incomparable. We see that f0(x) is indeed monotone and agrees with g on the support of D.
Finally, we get to picking the parameters. Recall that N = 20.01n. We take M = 20.1n and

δ = δ2 +
N2

M
+ 100 N√

M
= δ2 + 100 N

20.05n
+ N2

20.1n
, which allows us to conclude that the tester T ,

given samples (x, g(x)) with x ∼ D′, accepts with probability at least 1− δ2−100 N
20.05n

− N2

20.1n
=

1− δ2 − 1
2Ω(d) . We proceed to making sure Equation 1.9 is satisfied:

• We see that N2

M
1(

δ−δ2−N2

M

)2 = N2

M
1

10000N2

M

= 1
10000

.

• Taking α = 1
2
e
−0.1 d

log2 d , we see that now M2

2d
+ e−2α2M + d

√
2n ln 2

α

2d
M2 = 2−Ω(d), so taking d

sufficiently large we can make this expression as small as we want.

Thus, Equation 1.9 holds for sufficiently large d for our choice of the parameters. We see that our
choice of parameters also satisfies the required condition δ − δ2 > N2

M
. Condition 5 tells that the

expected advantage of the predictor f̂ is at most

12α + 6
N

M
+ 20

√
lnM

M
= 6e

−0.1 d
log2 d + 6

20.01n

20.1n
+

20
√
0.1n

20.005n
= 2

−Ω
(

d
log2 d

)
.

1.9 Miscellaneous proofs.

1.9.1 Improvement of error probabilities for a tester-learner pair via repe-
tition.

If the constants 1/4 and 3/4 in the Definition 3 are replaced by some other constants 1− δ2 and
1 − δ3 with δ3 ∈ (δ2, 1), then we say that T is a (δ2, δ3)-tester for the distributional assumption
of A. The following proposition tells us that that taking δ2 = 1/4 and δ3 = 3/4 is without loss of
generality.

61

Proposition 18. Let δ1, δ2, ϵ ∈ (0, 1), δ3 ∈ (δ2, 1) and letA be an agnostic (ϵ, δ1)-learner for func-
tion class F relative to the distribution D, and T be a (δ2, δ3)-tester for the distributional assump-
tion ofA. Then, for every integer r ≥1 there is a

(
2 exp

(
−2(δ3−δ2)

2r
9

)
, 1− 3 exp

(
−2(δ3−δ2)

2r
9

))
-

tester T ′ for the distributional assumption of A that consumes only O (r) times as much samples
and run-time as T .

Proof. The tester T ′ is constructed by (i) repeating T r times (ii) if the fraction of “Yes” answers is
at least 1− δ2+δ3

2
, then output “Yes”, otherwise output “No”. By Hoeffding’s bound with probability

at least 1− 2 exp
(
−2(δ3−δ2)

2r
9

)
, the fraction of “Yes” answers observed is within δ3−δ2

3
of the true

probability that T outputs “Yes”. So,

• Recall that, given access to samples from Dpairs, the algorithm T outputs “Yes” with proba-
bility at least 1−δ2. Therefore, given access to samples fromDpairs, the algorithm T ′ outputs

“Yes” with probability at least 1− 2 exp
(
−2(δ3−δ2)

2r
9

)
.

• Suppose, given access to samples fromDpairs, the algorithm T outputs “Yes” with probability
p. Then, if p < 1 − δ3, the algorithm T ′ can output “Yes” with probability only at most
2 exp

(
−2(δ3−δ2)

2r
9

)
. Therefore, if the algorithm T ′ outputs “Yes” with probability at least

3 exp
(
−2(δ3−δ2)

2r
9

)
, it has to be the case that the algorithm T outputs “Yes” with probability

at least 1 − δ3. The Soundness condition then tells us that A will then satisfy the required
bound on the generalization error when run on samples from Dpairs.

1.9.2 Proof of Observation 1.

Since for y ∈ [−1, 1] both f(wy) and Tk(y) are also in [−1, 1], we have that16 all ak are in
[−4, 4]. We also see that that the largest coefficient among all the monomials of Tk(y) is at most 3k

(this follows by induction via the recursive relation Tk+1(x) = 2xTk(x)− Tk−1(x)). Since w ≥ 1,
the largest coefficient among all the monomials of Tk

(
y
w

)
is also at most 3k. Thus, the largest

coefficient of fs(x) :=
∑s

k=0 akTk(
x
w
) can only be at most O (s3s).

16Proof: we have |ak| =
∣∣∣∣ 1+1k>0

π

∫ 1

−1
f(wy)Tk(y)√

1−y2
dy

∣∣∣∣ ≤ 2
π

∫ 1

−1
1√
1−y2

dy = 4, where the integral in the end is

evaluated via a standard substitution of y = cos(α).

62

1.9.3 Proof of Proposition 1.

We have

Ex∈RD

[
|f(x)− fd(x)|1|x|>w

] Since |f(x)|≤ 1.︷ ︸︸ ︷
≤ Ex∈RD

[
(1 + |fd(x)|)1|x|>w

]
≤

Breaking fs into monomials, then using triangle inequality and Observation 1︷ ︸︸ ︷
≤ Ex∈RD

[
1|x|>w

]
+O

(
d3d
) d∑

k=0

Ex∈RD

[
|x|k 1|x|>w

]
≤ O

(
4d max

0≤k≤d
Ex∈RD

[
|x|k 1|x|>w

])
= O

(
4dEx∈RD

[
|x|d 1|x|>w

])
︸ ︷︷ ︸

Since w ≥ 1, when |x| > w the value of |x|k grows with k.

1.9.4 Proof of Proposition 2.

Applying Markov’s inequality to |x|d0 , we have

Pr [|x| ≥ τ] ≤
(
β

τ

)d0

.

The above covers the case when k = 0. When k > 0 we proceed by using the inequality above as
follows,

Ex∈RD

[
|x|k 1|x|>w

]
= Ex∈RD

[
wk
1|x|>w +

∫ ∞

τ=w

kτ k−1
1|x|>τ dt

]
=

= wkPrx∈RD [|x| > w] +

∫ ∞

w

kτ k−1Prx∈RD [|x| > τ] dτ︸ ︷︷ ︸
Via linearity of expectation and Tonelli’s theorem.

≤

wk

(
β

w

)d0

+

∫ ∞

w

kτ k−1

(
β

τ

)d0

dτ = wk

(
β

w

)d0

+
k

d0 − k
wk

(
β

w

)d0

=

= wk

(
β

w

)d0 d0
d0 − k

≤ 2wk

(
β

w

)d0

.

1.9.5 Proof of Observation 2.

Without loss of generality, assume ∆ = 1
ϵ4
ln4
(
1
ϵ

)
.

63

We have∣∣∣Ex∼D

[
(v · x)d

]
− Ex∼N(0,In×n)

[
(v · x)d

]∣∣∣ =∣∣∣∣∣∣∣∣
∑

α1,···αn∈Z≥0

α1+···+αn=d

(
Ex∼D

[
n∏

i=1

(vixi)
αi

]
− Ex∼N(0,In×n)

[
n∏

i=1

(vixi)
αi

])∣∣∣∣∣∣∣∣ ≤∑
α1,···αn∈Z≥0

α1+···+αn=d

(∣∣∣∣∣
n∏

i=1

vαi
i

∣∣∣∣∣ 1

n∆

)
≤ nd 1

n∆
.

︸ ︷︷ ︸
Using |vi| ≤1 and bounding the number of {αi}

1.9.6 Tester-learner pair for decision lists

First, recall the definition of a decision list (a more general definition is given in [Riv87]):

Definition 5. For some ordering of the variables xπ(1), . . . , xπ(d), values v1, . . . , vn ∈ {±1} and
bits b1, . . . , bn ∈ {±1}, a decision list does the following: For i = 1 to d, if xπ(i) = bπ(i) output
vπ(i), else continue. If the decision list reaches the end of execution without outputting anything, it
outputs 0.

Now, we will present the tester-learner pair for decision lists. The tester will check that the
distribution on examples is close to k-wise independent. The insight behind the learning algorithm
is that any decision list is well-approximated by a short decision list if the distribution on examples
is close to k-wise independent.
Tester-learner pair for learning decision lists over {0, 1}d:

• Define k := log 1
ϵ
.

• Learning algorithm ADL. Given access to i.i.d. labeled samples (x, y) ∈ {±1}d × {±1}
from an unknown distribution:

– Take 100
ϵ2
k3 log d samples {(xi, yi)}.

– Enumerate over all functions f that can be represented as decision lists on any size-k
subset S of {1, · · · d}: Compute the fraction of example label pairs on which f gives
the wrong answer. Denote it as êrr(f).

– Among the functions just considered, output the function f0 that fits best. In other
words, the function for which êrr(f) was smallest.

• Testing algorithm TDL. Given access to i.i.d. labeled examples x ∈ {±1}d from an un-
known distribution:

64

1. Use a tester from literature (see [OZ18, AAK+07, AGM03]) for testing k-wise inde-
pendent distributions against distributions that are ϵ-far from k-wise independent.

2. Output the same response as the one given by the k-wise independence tester.

Theorem 7 (Tester-learner pair for learning decision lists under uniform distribution on
{±1}d). Assume d and 1

ϵ
are larger than some sufficiently large absolute constants. Then, the

algorithm ADL is an agnostic (O(ϵ), 0.1)-learner for the function class of decision lists (see Defi-
nition 5) over {±1}d under the uniform distribution and the algorithm TDL is an assumption tester
for ADL. The algorithms ADL and TDL both require only dO(log

1
ϵ) samples and run-time. Addition-

ally, the tester TDL is label-oblivious.

The testers from the literature for k-wise independence take dO(k)/η2 samples and run-time to
distinguish a k-wise independent distribution and a distribution that is η-far from k-wise indepen-
dent (see [OZ18, AAK+07, AGM03]). Thus, the run-time of tester TDL is dO(log(1/ϵ)). The same
run-time bound of dO(log(1/ϵ)) holds for ADL for the following reason. There are only at most dk of
size-k subsets of {1, · · · , d} and there are at most 2k · kk decision lists on each size-k set. Substi-
tuting k = log(1/ϵ) gives a bound of dO(log(1/ϵ)) on the number of functions f considered by the
algorithm and hence on the run-time.

The only thing remaining to prove is that the algorithm ADL is indeed a (O(ϵ), 0.1)-agnostic
learning algorithm for the class of decision lists on {±1}d with respect to distributions D that are
ϵ-close to k-wise independent.

Let Dpairs be the distribution from which we are getting example-label pairs. For any function
g : {±1}d → {±1} we let error of g denote the flowing:

err(g) := Pr(x,y)∼Dpairs [g(x) ̸= y]

Let opt be the smallest error among all decision lists. We want to show that if the distribution of
examples is ϵ-close to k-wise independent, then the function f0 thatADL outputs has err(f0) that is
at most opt +O(ϵ).

First of all, by the Hoeffding bound and the union bound, we have that with probability at least
0.9 for every function considered by the algorithm ADL it is the case that

|êrr(f)− err(f)| ≤ O(ϵ).

Thus, the only thing left to prove is that among the functions f considered by ADL there is one for
which err(f) is at most opt +O(ϵ). That follows from the following proposition:

Proposition 19. Let g be a decision list over {±1}d and let k := log 1
ϵ
. Also letD be a distribution

that is ϵ-close in TV distance to k-wise independent. Then, there is a decision list f on a size-k
subset of {1, · · · d} for which

Prx∼D [g(x) ̸= f(x)] = O(ϵ)

Proof. First, we recall the definition of a decision list. For some ordering of the variables xπ(1), . . . , xπ(d),
values v1, . . . , vn ∈ {±1} and bits b1, . . . , bn ∈ {±1}, the decision list g does the following: For
i = 1 to d, if xπ(i) = bπ(i) it outputs vπ(i), else it continues.

65

Let the decision list g be defined on the first k variables in the ordering xπ(1), . . . , xπ(d) and let
g repeat the same comparisons and outputs as f until it reaches the k + 1-st variable.

Recall that D is only ϵ-close in TV distance to a k-wise independent distribution. Let D′ be
the closest k-wise independent distribution to D. Then, D′ is uniform on the first k variables in
the ordering on xπ(1), . . . , xπ(d). Therefore, the execution of f will reach past the k-th comparison
only with probability at most 2k = O(ϵ). The same is true for function g and therefore we have

Prx∼D′ [g(x) ̸= f(x)] = O(ϵ).

But from the definition of the TV distance we have that the function 1g(x)̸=f(x) should not allow
us to distinguish D and D′ with advantage better than ϵ. Therefore

|Prx∼D′ [g(x) ̸= f(x)]− Prx∼D [g(x) ̸= f(x)]| ≤ ϵ.

Together with the previous equation we conclude

Prx∼D [g(x) ̸= f(x)] = O(ϵ).

66

Chapter 2

Tester-Learners for Halfspaces: Universal
Algorithms.

2.1 Chapter Overview.

In this chapter we continue our investigation of tester-learner pairs. Chapter 1 and [GKK23]
establish foundational algorithmic and statistical results for this framework and show that testable
learning is in general provably harder than ordinary distribution-specific agnostic learning. One of
the main algorithmic results in Chapter 1 and [GKK23] are tester-learners for the class of halfs-
paces over Rd that succeed whenever the target marginal is Gaussian (or one of a more general class
of distributions), achieving error opt + ϵ in time1 and sample complexity dÕ(1/ϵ2). This matches
the running time of ordinary distribution-specific agnostic learning of halfspaces over the Gaussian
using the standard approach of [KKMS08]. These testers are simple and label-oblivious, and are
based on checking whether the low-degree empirical moments of the unknown marginal match
those of the target D∗.

These works essentially resolve the question of designing tester-learners achieving error opt+ϵ
for halfspaces, matching known hardness results for (ordinary) agnostic learning [GGK20, DKZ20,
DKPZ21]. Their running time, however, necessarily scales exponentially in 1/ϵ. A long line of
research has sought to obtain more efficient algorithms at the cost of relaxing the optimality guar-
antee [ABL14, DKS18, DKTZ20a, DKTZ20b]. These works give polynomial-time algorithms
achieving bounds of the form opt + ϵ and O(opt) + ϵ for the Massart and agnostic setting re-
spectively under structured distributions (see Section 2.1.1 for more discussion). The first question
we consider in this chapter is whether such guarantees can be obtained in the testable learning
framework.

In this chapter we design the first tester-learners for halfspaces that run in fully polynomial
time in all parameters. We match the optimality guarantees of fully polynomial-time learning
algorithms under Gaussian marginals for the Massart noise model (where the labels arise from a

1Note that Chapter 1 ahieves a run-time and sample complexity of dÕ(1/ϵ4), which was improved to dÕ(1/ϵ2) in
[GKK23].

67

halfspace but are flipped by an adversary with probability at most η) as well as for the agnostic
model (where the labels can be completely arbitrary). In fact, for the Massart setting our guarantee
holds with respect to any chosen target marginal D∗ that is isotropic and strongly log-concave, and
the same is true of the agnostic setting albeit with a slightly weaker guarantee.

We also address another shortcoming of tester-learners in Chapter 1 and [GKK23], namely
that they are closely tailored to the particular target marginal D∗ that is chosen. Indeed, their tests
would reject many well-behaved distributions that are appreciably far from D∗. A highly natural
question from both a theoretical and a practical perspective is: can we design tester-learners that
accept a wide class of distributions simultaneously, without being tailored to any particular one?
In this work we answer this question in the affirmative by introducing and studying universally
testable learning. We formally define this framework as follows.

Definition 6 (Universally Testable Learning). Let C be a concept class mapping Rd to {±1}. Let
D be a family of distributions over Rd. Let ϵ, δ > 0 be parameters, and let ψ : [0, 1] → [0, 1] be
some function. We say C can be universally testably learned w.r.t. D up to error ψ(opt) + ϵ with
failure probability δ if there exists a tester-learner A meeting the following specification. For any
distribution DXY on Rd × {±1}, A takes in a large sample S drawn from DXY , and either rejects
S or accepts and produces a hypothesis h : Rd → {±1} such that:

1. Soundness: With probability at least 1 − δ over the sample S the following is true: If A
accepts, then the output h satisfies P(x,y)∼DXY [h(x) ̸= y] ≤ ψ(opt(C, DXY)) + ϵ, where
opt(C, DXY) = inff∈C P(x,y)∼DXY [h(x) ̸= y].

2. Completeness: Whenever the marginal of DXY lies within D, A accepts with probability at
least 1− δ over the sample S.

In this terminology, the original definition of testable learning reduces to the special case where
D = {D∗}, which was introduced in Chapter 1. We stress that while the work of [GKK23] allowed
D∗ to be, say, any fixed strongly log-concave distribution, their tester-learners are still tailored to
the particular D∗ that is selected. This is because their tests rely on checking that the unknown
distribution closely matches moments with D∗. By contrast, a universal tester-learner must accept
all marginals in a family D.

This chapter contributes the first universal tester-learner for the class of halfspaces with respect
to a broad family of structured continuous distributions. This family is the set of all distribu-
tions with bounded Poincaré constant (see Definition 9) and some mild concentration and anti-
concentration properties (see Definition 7). It captures all strongly log-concave distributions, and
in fact, under the well-known Kannan–Lóvasz–Simonovits (KLS) conjecture (see Conjecture 10),
it captures all log-concave distributions as well.

Theorem 8 (Universal and Efficient Tester-Learner for Halfspaces; formally stated as Theorem 11).
Let C be the class of origin-centered halfspaces over Rd. LetD be the class of Θ(1)-nice and Θ(1)-
Poincaré distributions (see Definitions 7 and 9), which includes all isotropic strongly log-concave
and, under KLS, all isotropic log-concave distributions. Then C can be universally testably learned
w.r.t. D up to error O(opt) + ϵ in poly(d, 1

ϵ
) time and sample complexity.

68

A special and well-studied case of interest is when the label noise follows the Massart model,
i.e. the label of every example is flipped by an adversary with probability at most η. In this case
we are able to handle a considerably larger class D while also providing a stronger guarantee.

Theorem 9 (Universal Tester-Learner for Massart Halfspaces; formally stated as Theorem 11).
Let C be the class of origin-centered halfspaces over Rd. Let D be the class of poly(d)-nice and
poly(d)-Poincaré distributions, which includes all isotropic log-concave distributions (uncondi-
tionally). Suppose the label noise follows the Massart model with noise rate at most η < 1

2
. Then C

can be universally testably learned w.r.t. D up to error opt+ ϵ in poly(d, 1
ϵ
, 1
1−2η

) time and sample
complexity.

Technical Overview. We first describe the key reasons why prior tester-learners were tailored
to a specific target D∗. All known polynomial-time algorithms for agnostically learning halfs-
paces up to error O(opt) + ϵ require some concentration and anti-concentration properties from
the input marginal distribution (encapsulated e.g. in Definition 7). While concentration is relatively
straightforward to check (e.g. by checking that the moments do not grow at too fast a rate), the key
challenge in designing tester-learners for halfspaces is to check anti-concentration. All prior tester-
learners [RV23, GKK23, DKK+23] use the heavy machinery of moment-matching to achieve this.
This approach relies on establishing structural properties of the following type: if D∗ is a well-
behaved distribution (e.g. a strongly log-concave distribution), and D approximately matches D∗

in its low-degree moments, thenD is also well-behaved (in particular, anti-concentrated). A canon-
ical statement of such a property is the main pseudorandomness result of [GKK23] (see Theorem
5.6 therein), which establishes that approximate moment-matching fools functions of a constant
number of halfspaces. Applying this property inherently requires comparing the low-degree mo-
ments of D with those of D∗. Such tests do (implicitly) succeed universally for the class of all
distributions that match low-degree moments with D∗ (e.g., if D∗ is the uniform distribution over
the hypercube, moment matching would accept all k-wise independent distributions). Definition
6, however, seeks a far broader kind of universality. Our tests are not tailored to a single target
in any way, and are intended to succeed over practical classes of distributions that are commonly
considered in learning theory (e.g., log-concave distributions).2

The tester-learner first computes a stationary point w of a certain smooth version of the ramp
loss, a surrogate for the 0-1 loss. Let w∗ be any solution achieving 0-1 error opt. The tester-
learner now checks distributional properties of the unknown marginal D that ensure that w is close
in angular distance to w∗ (specifically, they ensure the contrapositive, namely that any w that has
large gradient norm must have large angle with w∗). By a more careful analysis of the gradient
norm (see Proposition 25), we are able to reduce to showing the following weak anti-concentration
property. Let v denote any unit vector orthogonal to w, and let DT denote D restricted to the band
T = {x | |⟨w,x⟩| ≤ σ} (where the width σ is carefully selected according to certain constraints).

2One may wonder if it is possible to test whether the low-degree moments of the input marginal D match any
distribution in a family D (e.g., all strongly log-concave distributions) without directly comparing to a specific D∗.
This is a reduction to testing whether a given (approximate) low-degree moment tensor lies within a large set of
target low-degree moment tensors, and would indeed suffice for universally testable learning. This general problem,
however, seems highly challenging to solve directly.

69

Then the property we need is that

P
x∼DT

[|⟨v,x⟩| ≥ Θ(1)] ≥ Θ(1).

Our key observation is that the classical Paley–Zygmund inequality applied to the random variable
Z = ⟨v,x⟩2, where x ∼ DT , already gives us the following type of anti-concentration:

P
[
Z >

E[Z]
2

]
≥ 1

4
· E[Z]

2

E[Z2]
.

This turns out to suffice for our purposes—provided we can show a hypercontractivity property for
Z, namely that E[Z2] ≤ Θ(1)E[Z]2 (as well as that E[Z] = Θ(1), which is just a second moment
constraint).

Our main algorithmic idea is to use a sum-of-squares (SOS) program to check hypercontrac-
tivity of the random variable Z. To do so, we crucially leverage a result due to [KS17] stating that
any D that has bounded Poincaré constant is certifiably hypercontractive in the SOS framework
(and it turns out this extends to DT as well). This means that we can run a certain polynomial-time
semidefinite program that checks hypercontractivity of Z over the sample, and whenever D is in
fact Poincaré, we are guaranteed that the test will pass with high probability (see Proposition 24).
This is sufficient to ensure that the stationary point w we have computed is indeed close in angular
distance to w∗.

In order to finally arrive at our main results, we need to run further tests which ensure that
the disagreement between our computed w and any (unknown) optimum w∗ is bounded by the
angle between them, i.e., Px∼D[sign(⟨w,x⟩ ≠ sign(⟨w∗,x⟩)] ≤ O(∡(w,w∗)) (see Lemma 6).
This in turn guarantees that w has error O(opt) + ϵ. From a technical perspective, prior to this
chapter, such tests either produced a suboptimal bound, or required estimating the operator norms
of a polynomial number of random matrices formed using rejection sampling. We significantly
simplify this approach by showing that it is sufficient to estimate the operator norm of a single
random matrix. Finally, to obtain our improved results for the Massart setting, it turns out that the
proof admits certain simplifications that guarantee final error opt + ϵ while also allowing a wider
range of Poincaré distributions.

Related Work. There is a large body of work on agnostic learning algorithms for halfspaces
that run in fully polynomial time. We briefly mention only those that are most closely relevant to
this chapter; please see [BH21] for a survey.

2.1.1 Related work

In the distribution-specific agnostic setting where the marginal is assumed to be isotropic and
log-concave, [KLS09] showed an algorithm achieving error O(opt1/3) + ϵ for the class of origin-
centered halfspaces. [ABL14] later obtained O(opt) + ϵ using an approach that introduced the
principle of iterative localization, where the learner focuses attention on a band around a candi-
date halfspace in order to produce an improved candidate. [Dan15] used this principle to obtain

70

a PTAS for agnostically learning halfspaces under the uniform distribution on the sphere, and
[BZ17] extended it to more general s-concave distributions. Further works in this line include
[YZ17, Zha18, ZSA20, ZL21]. [DKTZ20b] introduced the simplest approach yet, based entirely
on nonconvex SGD, and showed that it achieves O(opt) + ϵ for origin-centered halfspaces over a
wide class of structured distributions. Other related works include [DKS18, DKTZ22].

In the Massart noise setting with noise rate bounded by η, work of [DGT19] gave the first
efficient distribution-free algorithm achieving error η + ϵ; further improvements and followups
include [DKT21, DTK22]. However, the optimal error opt achievable by a halfspace may be
much smaller than η, and it has been shown that there are distributions where achieving error
competitive with opt as opposed to η is computationally hard [DK22, DKMR22]. As a result, the
distribution-specific setting remains well-motivated for Massart noise. Early distribution-specific
algorithms were given by [ABHU15, ABHZ16], but a key breakthrough was the nonconvex SGD
approach introduced by [DKTZ20a], which achieved error opt + ϵ for origin-centered halfspaces
efficiently over a wide range of distributions. This was later generalized by [DKK+22].

Following a long line of work on distribution-specific agnostic learners for halfspaces [KLS09,
ABL14, Dan15, BZ17, YZ17, Zha18, ZSA20, ZL21], the work of [DKTZ20a] introduced a par-
ticularly simple approach for the Massart setting, based solely on non-convex SGD. This chapter,
which sets the template that our approach also follows, achieved the information-theoretically
optimal error of opt + ϵ for origin-centered Massart halfspaces over a wide range of structured
distributions (and was later extended to general halfspaces by [DKK+22]). The non-convex SGD
approach was then generalized by [DKTZ20b] to show an O(opt) + ϵ guarantee for the fully ag-
nostic setting.

Certifying distributional properties such as hypercontractivity is an important aspect of a large
body of work on robust algorithmic statistics using the SOS framework. We will not attempt to
summarize this literature here and direct the reader to [KS17, BK21] for overviews of related work,
as well as to [FKP+19] for a textbook treatment. The notion of certifiable anti-concentration has
also been studied (see e.g. [KKK19a, RY20, BK21]), but it turns out not to be directly useful for
our purposes as it is only known to hold for distributions satisfying very strong conditions such as
rotational symmetry.

Limitations and Further Work. Open directions in testable learning (and universally testable
learning) include the design of (efficient) tester-learners for concept classes other than the class of
halfspaces, e.g., functions of halfspaces or neurons with other activations (like ReLU or sigmoid).

2.2 Preliminaries

Notation and Terminology. For what follows, we consider DXY to be an unknown joint
distribution over X × Y from which we receive independent samples, and its marginal on X will
be denoted by DX . In particular X = Rd, and labels will lie in Y = {±1}. We will use C to
denote a concept class mapping Rd to {±1}, which throughout this chapter will be the class of
halfspaces or functions of halfspaces over Rd. We use opt(C, DXY) to denote the optimal error
inff∈C P(x,y)∼DXY [f(x) ̸= y], or just opt when C and DXY are clear from context. We recall

71

that in Massart noise model, the labels satisfy Py∼DXY |x[y ̸= sign(⟨w∗,x⟩) | x] = η(x), with
η(x) ≤ η < 1

2
for all x. When we have adversarial noise (i.e., when we are in the agnostic model),

the labels can be completely arbitrary. In both cases, the goal is to produce a hypothesis whose
error is competitive with opt. We use E to denote the expectation of a random variable in brackets
(or, correspondingly, P for the probability of an event), either over the unknown joint distribution
or over the empirical distribution with respect to a sample S (e.g., EZ∈S[f(Z)] =

1
|S|
∑

Z∈S f(Z)).
Definitions and Distributional Assumptions. For the problem of learning halfspaces in the

agnostic and in Massart noise models, any of the known polynomial algorithms that achieve com-
putationally optimal guarantees require that the marginal distribution has at least the following nice
properties previously defined by, e.g., [DKTZ20b].

Definition 7 (Nice Distributions). For a given constant λ ≥ 1, we consider the class of λ-nice
distributions over Rd to be the distributions that satisfy the following properties:

1. For any unit vector v in Rd the distribution satisfies E[⟨v,x⟩2] ∈ [1
λ
, λ].(bounded spectrum)

2. For any two dimensional subspace V , the corresponding marginal density qV (x) satisfies
qV (x) ≥ 1/λ for any ∥x∥2 ≤ 1/λ. (anti-anti-concentration)

3. For any two dimensional subspace V , the corresponding marginal density qV (x) satisfies
qV (x) ≤ Q(∥x∥2) for some function Q : R+ → R+ such that supr≥0Q(r) ≤ λ and also∫∞
r=0

rkQ(r) dr ≤ λ, for any k = 1, 3, 5. (anti-concentration and concentration)

In the testable learning framework, however, corresponding results provide testable guarantees
with respect to target marginals that are isotropic strongly log-concave , which is a strictly stronger
condition than the one of Definition 7 (see Proposition 20 below). We now provide the standard
definition of (strongly) log-concave distributions.

Definition 8 ((Strongly) Log-Concave Distributions [SW14]). We say that a distribution over Rd

is (β-strongly) log-concave, if its density can be written as e−φ, where φ is a (β-strongly) convex
function on Rd (for some β > 0).

Proposition 20 (Log-Concave Distributions are Nice [LV07]). There exists a universal constant
λ ≥ 1 such that any isotropic log-concave distribution is λ-nice.

In this work, we provide universally testable guarantees with respect to the class of nice distri-
butions with bounded Poincaré constant (see Definition 9 below).

Definition 9 (Poincaré Distributions). For a given value γ > 0, we say that a distribution over Rd

is γ-Poincaré, if var(f(x)) ≤ γ · E[∥∇f(x)∥22] for any differentiable function f : Rd → R.

Although it is not clear whether one can efficiently obtain testable guarantees for the problem
of learning noisy halfspaces under nice marginals (which is known to be an efficiently solvable
problem in the non-testable setting [DKTZ20a, DKTZ20b]), by restricting our attention to nice
distributions that, additionally, have bounded Poincaré constant, we obtain efficient learning re-
sults, even in the universally testable setting. Our results capture isotropic strongly log-concave
distributions universally, due to Proposition 20 and the fact that strongly log-concave distributions
are also Poincaré, as per Proposition 21 below.

72

Proposition 21 (Strongly Log-Concave Distributions are Poincaré, [SW14, Proposition 10.1]).
Any 1

γ
-strongly log-concave distribution is γ-Poincaré.

Furthermore, under a long-standing conjecture about the geometry of convex bodies [KLS95],
our results capture the family of all isotropic log-concave distributions.

Conjecture 10 (Kannan–Lovász–Simonovits Conjecture [KLS95] reformulation from [LV18]).
There is a universal constant γ > 0 for which any isotropic log-concave distribution is γ-Poincaré.

2.3 Universal Testers

In this section, we present two basic testers that constitute the basic building blocks of the
universal tester-learners we provide in the next section. The testers in this section might be of
independent interest and their appeal is that they succeed even when the distribution in their input
is unspecified up to certain bounds on a number of its statistics. In fact, the family of distributions
for which each such tester succeeds is of infinite size, even non-parametric.

2.3.1 Universal Tester for Bounding Local Halfspace Disagreement

First, we present a universal tester that checks, given a parameter vector w, whether a set of
samples S is such that bounding the angular distance of w from an optimum parameter vector,
implies that the corresponding halfspace disagrees with the (unknown) optimum halfspace only
on a bounded fraction of points in S. This property ensures that if w is close to the optimum
parameter vector, then it is also an approximate empirical risk minimizer. The tester universally
accepts samples from nice distributions with high probability (Definition 7).

Lemma 6 (Universally Testable Bound for Local Halfspace Disagreement). Let DXY be a distri-
bution over Rd × {±1}, w ∈ Sd−1, θ ∈ (0, π/4], λ ≥ 1 and δ ∈ (0, 1). Then, for a sufficiently
large constant C, there is a tester that given δ, θ, w and a set S of samples from DX with size at
least C ·

(
d4

θ2δ

)
, runs in time poly

(
d, 1

θ
, 1
δ

)
and satisfies the following specifications:

1. If the tester accepts S, then for every unit vector w′ ∈ Rn satisfying ∡(w,w′) ≤ θ we have

P
x∼S

[sign(⟨w′,x⟩) ̸= sign(⟨w,x⟩)] ≤ C · θ · λC

2. If the distribution DX is λ-nice, the tester accepts S with probability 1− δ.

The proof of Lemma 6 exploits the observation that the probability of disagreement between
two halfspaces can be upper bounded by a sum of products, where each product has two terms:
one corresponding to the probability of falling in a (known) strip orthogonal to w and one cor-
responding to the probability of having large enough inner product with some unknown vector
orthogonal to w, conditioned in the (known) strip. We propose a tester that controls all of the

73

terms of the sum simultaneously by estimating the largest eigenvalue of a single covariance matrix
(without conditioning). Upper and lower bounds on the eigenvalues of random symmetric matrices
can be universally tested with testers that are guaranteed to accept when the elements of the matrix
have bounded second moments (spectral tester of Proposition 26). We present our full proof in
Appendix 2.6.1.

2.3.2 Universally Testable Weak Anti-Concentration

We now provide an important universal tester, which ensures that for a given vector w, a
sample set S and any unknown unit vector v orthogonal to w, among the samples falling within
a (known) strip orthogonal to w, at least a constant fraction is absolutely correlated with v by a
constant. In other words, the tester ensures that the conditional empirical distribution is weakly
anti-concentrated in every direction. The tester universally accepts nice distributions that have
bounded Poincaré constant.

Lemma 7 (Universally Testable Weak Anti-Concentration). LetD be a distribution over Rd. Then,
there is a universal constant C > 0 and a tester that given a unit vector w ∈ Rd, δ ∈ (0, 1), γ > 0,
λ ≥ 1, σ ≤ 1

2λ
and a set S of i.i.d. samples from D with size at least C · d4

σ2δ
log(d)λC , runs in time

poly(d, λ, 1
σ
, 1
δ
, log

(
1
γ

)
) and satisfies the following specifications

1. If the tester accepts S, then for any unit vector v ∈ Rd with ⟨v,w⟩ = 0 we have

P
x∈S

[
|⟨v,x⟩| ≥ 1

CλC

∣∣∣∣ |⟨w,x⟩| ≤ σ

]
≥ 1

CλCγ4

2. If D is γ-Poincaré and λ-nice, then the tester accepts S with probability at least 1− δ.

The proof of Lemma 7 is based on a simple fact from probability that is true for any non-
negative random variable and ensures that the mass assigned to the tails is lower bounded by the
ratio of the square of its expectation to the second moment.

Proposition 22 (Paley–Zygmund Inequality). For any non-negative random variable Z, we have

P[Z > E[Z]/2] ≥ 1

4
· E[Z]

2

E[Z2]

In the special case where Z follows the distribution of ⟨v,x⟩2 conditioned on |⟨w,x⟩| ≤ σ for
some unitary orthogonal vectors v,w, some σ > 0 and some random variable x whose distribution
is, say, 1-nice (see Definition 7), one can show that E[Z] is lower bounded by a constant and E[Z2]
is upper bounded by another constant, so Z assigns a non-trivial mass to a set that is bounded
away from zero. This property is useful in the context of learning noisy halfspaces, as we show in
the following section (see Proposition 25 and Lemma 8). However, testing algorithms that check
whether such a property holds for given w and σ, are guaranteed to succeed when the marginal

74

distribution has, additionally, bounded Poincaré constant. The main part of the proof that requires
a bounded Poincaré constant, is testing whether E[Z2] is bounded uniformly over the set of unit
vectors v orthogonal to w, since Z2 = ⟨v,x⟩4, where v is unknown. We use the following result
from [KS17].

Proposition 23 (Certifiable Hypercontractivity of Poincaré Distributions, Theorem 4.1 in [KS17]).
Let δ ∈ (0, 1), γ > 0 and let D be a γ-Poincaré distribution over Rd. Let S be a set of independent
samples fromD with size at least (2d log(4d/δ))4. Consider the constrained maximization problem

arg max
∥v∥2=1

E
x∈S

[⟨v,x⟩4] (2.1)

Then, the optimum solution of the degree-4 sum-of-squares relaxation of the problem (2.1) has
value at most Cγ4 for some universal constant C, with probability at least 1 − δ over the sample
S.

Using Proposition 23, we are able to provide a universal tester for bounding the empirical
fourth moments. The tester solves an appropriate SDP relaxation of the (hard) problem [HL13] of
finding the direction with maximum fourth moment and is guaranteed to succeed if x has Poincaré
parameter bounded by a known value.

Proposition 24 (Hypercontractivity Tester). LetD be a distribution over Rd. Then, there is a tester
that given δ ∈ (0, 1), γ > 0 and a set S of i.i.d. samples from D with size at least (2d log(4d/δ))4,
runs in time poly(d, log 1

δ
, log 1

γ
) and satisfies the following specifications

1. If the tester accepts S, then for any unit vector v ∈ Rd we have

E
x∈S

[⟨v,x⟩4] ≤ C · γ4 , where C is some universal constant.

2. If the distribution D is γ-Poincaré, then the tester accepts S with probability at least 1− δ.

Proof. The tester does the following:
1. Solves a degree-4 sum-of-squares relaxation of problem (2.1) up to accuracy γ4. (For a

formal definition of the relaxed problem, see Problem (2.3) in [KS17].)
2. If the solution has value larger than (C − 1)γ4, then reject. Otherwise accept.
The computational complexity of the tester is poly(|S|, d, log 1

γ
), since the problem it solves

can be written as a semidefinite program [Sho87, Par00, Nes00, Las01].
If the tester accepts S, then we know that the optimal solution of the relaxed problem is at most

Cγ4 and we also know that any solution of the initial problem (2.1) has value at most equal to the
value of the relaxation. Therefore E[⟨v,x⟩4] ≤ Cγ4, for any v ∈ Sd−1.

On the other hand, if the true distribution D is γ-Poincaré, then, with probability at least 1− δ,
we have that the solution found in step 2.3.2 has, with probability at least 1− δ, value at most C ′γ4

for some universal constant C ′, due to Proposition 23. In order to ensure that the tester will accept
with probability at least 1− δ, it suffices to pick C = C ′ + 1.

75

We provide the full proof of Lemma 7, in Appendix 2.6.2. The tests we perform include a
spectral tester that accepts with high probability when the distribution of x is nice (similar to the
spectral tester used for Lemma 6), a tester of the probability that |⟨w,x⟩| ≤ σ and the hypercon-
tractivity tester of Proposition 24.

2.4 Universal and Efficient Tester-Learners for Halfspaces

In this section, we present our main result on efficient and universal testable learning of halfs-
paces.

Theorem 11 (Efficient Universal Tester-Learner for Halfspaces). LetDXY be any distribution over
Rd × {±1}. Let C be the class of origin centered halfspaces in Rd. Then, for any λ ≥ 1, γ > 0,
ϵ > 0 and δ ∈ (0, 1), there exists an universal tester-learner for C w.r.t. the class of λ-nice and
γ-Poincaré marginals up to error poly(λ) · (1 + γ4) · opt + ϵ, where opt = minw∈Sd−1 PDXY [y ̸=
sign(⟨w,x⟩)], and error probability at most δ, using a number of samples and running time
poly(d, λ, γ, 1

ϵ
, log 1

δ
).

Moreover, if the noise is Massart with given rate η < 1/2, then the algorithm achieves error
opt + ϵ with time and sample complexity poly(d, λ, γ, 1

ϵ
, 1
1−2η

, log 1
δ
).

Our proof follows a surrogate loss minimization approach that has been used for classical
learning of noisy halfspaces [DKTZ20a, DKTZ20b]. In particular, the algorithm runs Projected
Stochastic Gradient Descent (see 29) on a surrogate loss whose stationary points are shown to be
close to optimum parameter vectors under certain distributional assumptions.

We use the following surrogate loss function.

Lσ(w;DXY) = E
(x,y)∼DXY

[
ℓσ

(
− y ⟨w,x⟩
∥w∥2

)]
, (2.2)

In Equation (2.2), the function ℓσ is a smoothed version of the step function as in Proposition 28.
In order to analyze the properties of the stationary points of the surrogate loss, we provide the

following refinement of results implicit in [DKTZ20a, DKTZ20b]. We show that the gradient of
the surrogate loss is lower bounded by the difference between certain quantities that are controlled
by the marginal distribution (see Figure 2-2). We stress that we do not use any assumptions for
the marginal distribution in this step. Prior work included similar bounds, but the corresponding
quantities were different. We need to be more precise and provide the following result, whose
proof is based on two dimensional geometry and can be found in Appendix 2.7.1.

Proposition 25 (Modification from [DKTZ20a, DKTZ20b]). For a distribution DXY over Rd ×
{±1} let opt be the minimum error achieved by some origin-centered halfspace and w∗ ∈ Sd−1 a
corresponding vector. Consider Lσ as in Equation (2.2) for σ > 0 and let η < 1/2. Let w ∈ Sd−1

with ∡(w,w∗) = θ < π
2

and v ∈ span(w,w∗) such that ⟨v,w⟩ = 0 and ⟨v,w∗⟩ < 0. Then, for
some universal constant C > 0 and any α ≥ σ

2 tan θ
we have ∥∇wLσ(w;DXY)∥2 ≥ A1−A2−A3,

76

where

A1 =
α

C · σ
· P
[
|⟨v,x⟩| ≥ α and |⟨w,x⟩| ≤ σ

6

]
A2 =

C

tan θ
· P
[
|⟨w,x⟩| ≤ σ

2

]
and A3 =

C

σ
·
√
opt ·

√
E
[
⟨v,x⟩2 · 1{|⟨w,x⟩|≤σ

2
}

]
Moreover, if the noise is Massart with rate η, then ∥∇wLσ(w;DXY)∥2 ≥ (1− 2η)A1 − A2.

If the marginal distribution is nice, then the quantities A1, A2 and A3 are such that σ can be
chosen accordingly so that stationary points of the surrogate loss (or their inverses) are close to
some optimum vector (see Proposition 27 for properties of nice distributions). We use some simple
tests (e.g., estimate the probability of falling in a strip, P[|⟨w,x⟩| ≤ σ/2] and appropriate spectral
testers) as well as our universal tester for weak anti-concentration (see 7) to establish bounds
on quantities A1, A2 and A3 which ensure that the desired property holds for a given vector w,
under no distributional assumptions. The tester in the following result universally accepts nice
distributions with bounded Poincaré parameter. The formal proof can be found in Appendix 2.7.2.

Lemma 8 (Universally Testable Structure of Surrogate Loss). Let DXY be any distribution over
Rd × {±1}. Consider Lσ as in Equation (2.2). Then, there is a universal constant C > 0 and a
tester that given a unit vector w ∈ Rd, δ ∈ (0, 1), η < 1/2, γ > 0, λ ≥ 1, σ ≤ 1

CλC and a set S of

i.i.d. samples from DXY with size at least C · d4

σ2δ
log(d)λC , runs in time poly(d, λ, 1

σ
, 1
δ
, log

(
1
γ

)
)

and satisfies the following specifications

1. If the tester accepts S, then, the following statements are true for the minimum error optS
achieved by some origin-centered halfspace on S and the optimum vector w∗

S ∈ Sd−1

• If the noise is Massart with associated rate η and ∥∇wLσ(w;S)∥2 ≤ 1−2η
CλCγ4 then either

∡(w,w∗
S) ≤

CλC(1+γ4)
1−2η

· σ or ∡(−w,w∗
S) ≤

CλC(1+γ4)
1−2η

· σ.

• If the noise is adversarial with optS ≤ σ
CλC and ∥∇wLσ(w;S)∥2 <

1
CλCγ4 then either

∡(w,w∗
S) ≤ CλC(1 + γ4) · σ or ∡(−w,w∗

S) ≤ CλC(1 + γ4) · σ.

2. If the marginal DX is λ-nice and γ-Poincaré, then the tester accepts S with probability at
least 1− δ.

We now give the algorithm for δ ← 1/3 since we can reduce the probability of failure with
repetition (repeat O(log 1

δ
) times, accept if the rate of acceptance is Ω(1) and output the halfspace

achieving the minimum test error among the halfspaces returned).
The algorithm receives λ ≥ 1, γ > 0, ϵ > 0 and η ∈ (0, 1/2) ∪ {1} (say η = 1 when we

are in the agnostic case) and does the following for some appropriately large universal constants
C1, C2 > 0.

1. First, initialize E = ϵ
C1λC1

, and let Σ be a list of real numbers and A be a positive real
number, where Σ and A are defined as follows. If η = 1, then Σ is an E

C1λC1
-cover of the

interval
[
0, 1

C1λC1

]
and A = 1

C1λC1γ4 . Otherwise, let Σ =
{ E·(1−2η)

C1λC1 (1+γ4)

}
and A = 1−2η

C1λC1γ4 .

77

2. Draw a set S1 of C2

(
λd
γϵ

)C2

i.i.d. samples from DXY and run PSGD, as specified in Propo-

sition 29 with ϵ← A, δ ← δ
C1

on the loss Lσ for each σ ∈ Σ.

3. Form a list L with all the pairs of the form (w, σ) where w ∈ Sd−1 is some iterate of the
PSGD subroutine performed on Lσ.

4. Draw a fresh set S2 of C2

(
λd
γϵ

)C2

i.i.d. samples from DXY and compute for each (w, σ) ∈ L
the value ∥∇wLσ(w;S2)∥2. If, for some σ ∈ Σ, ∥∇wLσ(w;S2)∥2 > A for all (w, σ) ∈ L,
then reject.

5. Update L by keeping for each σ ∈ Σ only one pair of the form (w, σ) for which we have
∥∇wLσ(w;S2)∥2 ≤ A.

6. Run the following tests for each (w, σ) ∈ L. (This will ensure that part (a) of Lemma 8
holds for each of the elements of L, i.e., that any stationary point of the loss Lσ that lies in
L is angularly close to the empirical risk minimizer3.).

• If P(x,y)∈S2 [|⟨w,x⟩| ≤ σ
6
] ≤ σ

C1λC1
or P(x,y)∈S2 [|⟨w,x⟩| ≤ σ

2
] > σ · C1λ

C1 , then reject.

• Compute the (d− 1)× (d− 1) matrices M+
S2

and M−
S2

as follows:4

M+
S2

= E
(x,y)∈S2

[
(proj⊥w x)(proj⊥w x)T · 1{|⟨w,x⟩|≤σ

2
}

]
M−

S2
= E

(x,y)∈S2

[
(proj⊥w x)(proj⊥w x)T · 1{|⟨w,x⟩|≤σ

6
}

]
• Reject if the maximum singular value of M+

S2
is greater than σ · C1λ

C1 .

• Reject if the minimum singular value of M−
S2

is less than σ
C1λC1

.

• Run the hypercontractivity tester on S ′ = {proj⊥w x : (x, y) ∈ S2 and |⟨w,x⟩| ≤ σ},
i.e., solve an appropriate SDP (see Prop. 24 with γ ← γ, δ ← δ/C1) and reject if the
solution is larger than a specified threshold.

7. Set θ = (1+γ4)σ
Aγ4 , and run the following tests for each pair of the form (w, σ) and (−w, σ)

where (w, σ) ∈ L. (This will ensure that part (a) of Lemma 6 is activated, i.e., that the
distance of a vector from the empirical risk minimizer is an accurate proxy for the error of
the corresponding halfspace.)

• If P(x,y)∈S2 [|⟨w,x⟩| ≤ θ] > C1λ
C1θ then reject.

3Or the same holds for the inverse vector.
4The operator proj⊥w : Rd → Rd−1 projects vectors on the hyperplane orthogonal to w.

78

• Compute the (d− 1)× (d− 1) matrix MS2 as follows:5

MS2 = E
(x,y)∈S2

[
∞∑
i=2

(proj⊥w x)(proj⊥w x)T

(i− 1)2
1{|⟨w,x⟩| ∈ [(i− 1)θ, iθ)}

]

• If ∥MS∥op > C1θλ
C1 , then reject.

8. Otherwise, accept and output the vector w that achieves the smallest empirical error on S2

among the vectors in the list L.

This concludes the algorithm. The full proof of Theorem 11 may be found in Appendix 2.7.3.

2.5 Technical Lemmas

In this section, we provide a list of technical results that we use in our proofs.

Lemma 9 (Preservation of Poincaré constant). Let I be an open interval in R and q : Rd → R+

the density of a γ-Poincaré distribution. Let v ∈ Sd−1 and q′v : Rd−1 → R+ be the density of the
distribution resulting from conditioning q to x·v ∈ I and projecting on the subspace perpendicular
to v. Then, the distribution corresponding to q′v is γ-Poincaré.

Proof. Assume, without loss of generality, that v = ed. We have that

q′v(x<d) =

∫
xd∈I

q(x<d, xd) dxd∫
x<d

∫
xd∈I

q(x) dx
, for any x<d ∈ Rd−1 .

Let f : Rd−1 → R be any differentiable function. In order to show that q′v is γ-Poincaré, it is
sufficient to show that under no further assumptions on f , the quantity varq′v(f(x<d)) is upper
bounded by the product of γ and Eq′v [∥∇f(x<d)∥22]. We expand the quantity varq′v(f(x<d)) as

5Note that only at most |S2| many terms below are non-zero, hence MS2
can be computed efficiently.

79

follows

varq′v(f(x<d)) = inf
τ

∫
x<d

(f(x<d)− τ)2q′v(x<d) dx<d

= inf
τ

∫
x<d

(f(x<d)− τ)2 ·
∫
xd∈I

q(x<d, xd) dxd∫
x<d

∫
xd∈I

q(x) dx
dx<d

=
infτ

∫
x<d

∫
xd∈I

(f(x<d)− τ)2 · q(x) dxd dx<d∫
x<d

∫
xd∈I

q(x) dx

≤
γ ·
∫
x<d

∫
xd∈I
∥∇xf(x<d)∥22 · q(x) dx∫

x<d

∫
xd∈I

q(x) dx
(since q is γ-Poincaré)

= γ ·
∫
x<d

∥∇x<d
f(x<d)∥22 · q′v(x<d) dx<d (since ∂f

∂xd
≡ 0)

= γ · E
q′v
[∥∇f(x<d)∥22] ,

which concludes the proof.

Proposition 26 (Spectral Tester). LetD be a distribution over Rd. Then, there is a tester that given
δ ∈ (0, 1), λ ≥ 1, θ > 0 and a set S of i.i.d. samples from D with size at least 2λd4

θ2δ
, runs in time

poly(d, 1
θ
, |S|) and satisfies the following specifications

1. If the tester accepts, then, for z ∼ S, ES[zz
T] ⪰ θ

2
Id (resp. ES[zz

T] ⪯ 2θId).

2. If, for z ∼ D, ED[(zizj)
2] ≤ λ and ED[zz

T] ⪰ θId (resp. ED[zz
T] ⪯ θId), then the tester

accepts with probability at least 1− δ.

Proof. The tester receives λ, a set S and δ ∈ (0, 1) and does the following:

1. Compute the matrix MS = ES[zz
T].

2. If the minimum (resp. maximum) eigenvalue of MS is larger than θ
2

(resp. smaller than 2θ),
then accept. Otherwise reject.

Clearly, if the tester accepts, then the desired property is satisfied by construction. If the distribution
D satisfies the conditions of part 2, we can show that for MD = Ez∼D[zz

T] we have∥∥MS −MD

∥∥
op
≤ θ

2
, with probability at least 1− δ

which implies that MS ⪰ θ
2
Id (and MS ⪯ (θ+ θ

2
)Id ⪯ 2θId). In particular, we have that (MS)ij =

ES[zizj], and by Chebyshev’s inequality we have

P
[
|(MS)ij − (MD)ij| >

θ

2d

]
≤ 4d2

θ2|S|
E

z∼D
[(zizj)

2] ≤ 4λd2

θ2|S|
≤ δ(

d
2

)
80

By a union bound, we get that ∥MS −MD∥max ≤ θ
2d

with probability at least 1 − δ and hence
∥MS −MD∥op ≤ d∥MS −MD∥max ≤ θ

2
, which concludes the proof.

Proposition 27. Let c ≥ 0, λ ≥ 1, σ ≤ 1
2λ

and D be a λ-nice distribution over Rd. Then, for
any unit vectors w,v,v′,u,u′ ∈ Rd with ⟨w,v⟩ = ⟨w,v′⟩ = 0 and for some universal constant
C > 0 we have

(i) P[|⟨w,x⟩| ≤ σ] = 2σ · αC , for some α ∈ [1
Cλ
, Cλ].

(ii) E[⟨v,x⟩2 · 1{|⟨w,x⟩| ≤ σ}] = 2σ · αC , for some α ∈ [1
Cλ
, Cλ].

(iii) E[⟨x,u⟩2⟨x,u′⟩2] = αC , for some α ≤ Cλ.

(iv) E[⟨v,x⟩2 · 1{|⟨w,x⟩| ∈ [c, c+ σ]}] ≤ 2σ · αC , for some α ≤ Cλ.

Proof. We start by deriving property (i). Recall the function Q from the definition of a λ-nice
distribution, which upper-bounds the density of any two-dimensional projection of a λ-nice distri-
bution we see that:

P[|⟨w,x⟩| ≤ σ] =

∫ σ

x1=−σ

∫ ∞

x2=−∞
qspan(v,w)(x1, x2) dx1dx2

≤
∫ σ

x1=−σ

∫ ∞

x2=−∞
Q

(√
x21 + x22

)
dx1dx2

Now, note that the region {(x1, x2) : |x1| ≤ σ} is a subset of the set

{(x1, x2) : |x2| ≤ σ|x1|} ∪ {(x1, x2) : |x1| ≤ σ & |x2| ≤ 1}.

Therefore:∫ σ

x1=−σ

∫ ∞

x2=−∞
Q

(√
x21 + x22

)
dx1dx2 ≤

4 arcsin(σ) ·
∫ ∞

r=0

2πrQ (r) dr +

∫ σ

x1=−σ

∫ 1

x2=−1

Q

(√
x21 + x22

)
dx1dx2 ≤ O(σλ)

Note that in the last line above, we bounded the first term via the bound
∫∞
r=0

rQ (r) dr ≤ λ from
the definition of λ-nice distributions. Likewise, we bounded the second term via the inequality
Q(r) ≤ λ from the definition of λ-nice distributions. Overall, we get

E[⟨v,x⟩2 · 1{|⟨w,x⟩| ≤ σ}] ≤ O(σλ)

81

Now, we shall lower-bound the same quantity. We have

P[|⟨w,x⟩| ≤ σ] =

∫ σ

x1=−σ

∫ ∞

x2=−∞
qspan(v,w)(x1, x2) dx1dx2

≥
∫ σ

x1=−σ

∫ 1
2λ

x2=− 1
2λ

qspan(v,w)(x1, x2) dx1dx2

Now, since σ ≤ 1
2λ

via the premise of the lemma, we see that the whole region of integration on
the right side of the set {(x1, x2) :

√
x21 + x22 ≤ 1

λ
}. From the definition of λ-nice distributions,

the density qspan(v,w) is lower-bounded by 1/λ in this region. Therefore, we have

P[|⟨w,x⟩| ≤ σ] ≥ 2σ

λ
· 1
λ
=

2σ

λ2
,

which finishes the proof of property (i).
Now, we derive property (ii). Recall the function Q from the definition of a λ-nice distribution,

which upper-bounds the density of any two-dimensional projection of a λ-nice distribution we see
that:

E[⟨v,x⟩2 · 1{|⟨w,x⟩| ≤ σ}] =
∫ σ

x1=−σ

∫ ∞

x2=−∞
x22 · qspan(v,w)(x1, x2) dx1dx2

≤
∫ σ

x1=−σ

∫ ∞

x2=−∞
x22 ·Q

(√
x21 + x22

)
dx1dx2

Now, note that the region {(x1, x2) : |x1| ≤ σ} is a subset of the set

{(x1, x2) : |x2| ≤ σ|x1|} ∪ {(x1, x2) : |x1| ≤ σ & |x2| ≤ 1}.

Therefore:∫ σ

x1=−σ

∫ ∞

x2=−∞
x22 ·Q

(√
x21 + x22

)
dx1dx2 ≤

4 arcsin(σ) ·
∫ ∞

r=0

2πr3Q (r) dr +

∫ σ

x1=−σ

∫ 1

x2=−1

x22 ·Q
(√

x21 + x22

)
dx1dx2 ≤ O(σλ)

Note that in the last line above, we bounded the first term via the bound on
∫∞
r=0

r3Q (r) dr from
the definition of λ-nice distributions. Likewise, we bounded the second term via the inequality
Q(r) ≤ λ from the definition of λ-nice distributions. Therefore, we get

E[⟨v,x⟩2 · 1{|⟨w,x⟩| ≤ σ}] ≤ O(σλ)

82

Now, we shall lower-bound the same quantity. We have

E[⟨v,x⟩2 · 1{|⟨w,x⟩| ≤ σ}] =
∫ σ

x1=−σ

∫ ∞

x2=−∞
x22 · qspan(v,w)(x1, x2) dx1dx2

≥
∫ σ

x1=−σ

∫ 1
2λ

x2=− 1
2λ

x22 · qspan(v,w)(x1, x2) dx1dx2

Now, since σ ≤ 1
2λ

via the premise of the lemma, we see that the whole region of integration on
the right side of the set {(x1, x2) :

√
x21 + x22 ≤ 1

λ
}. From the definition of λ-nice distributions,

the density qspan(v,w) is lower-bounded by 1/λ in this region. Therefore, we have

E[⟨v,x⟩2 · 1{|⟨w,x⟩| ≤ σ}] ≥ 2σ

λ
· 1

4λ2
· 1
λ
=

σ

2λ4
,

which finishes the proof of property (ii).
We proceed to property (iii). We will denote the angle between v and v′ as β, which allows us

to write

E[⟨x,v⟩2⟨x,v′⟩2] =
∫ ∞

x1=−∞

∫ ∞

x2=−∞
x21(x1 cos β + x2 sin β)

2qspan(v,w)(x1, x2) dx1dx2

≤
∫ ∞

x1=−∞

∫ ∞

x2=−∞
x21(x1 cos β + x2 sin β)

2 ·Q
(√

x21 + x22

)
dx1dx2

≤
∫ ∞

x1=−∞

∫ ∞

x2=−∞
(x21 + x22)

2 ·Q
(√

x21 + x22

)
dx1dx2

=

∫ ∞

r=0

2πr5Q(r) dr ≤ 2πλ,

which finishes the proof of property (iii).
Finally, we prove property (iv). For β ≥ 0 we have∫ ∞

r=0

r2Q
(√

r2 + β
)
dr =

∫ 1

r=0

r2Q
(√

r2 + β
)
dr +

∫ ∞

r=1

r2Q
(√

r2 + β
)
dr

≤ λ+

∫ ∞

r=1

r3Q
(√

r2 + β
)
dr (since supr≥0Q(r) ≤ λ)

≤ λ+

∫ ∞

r′=
√
1+β

(r′3 − βr′)Q(r′) dr′ (by setting r′ =
√
r2 + β)

≤ λ+

∫ ∞

r=0

r3Q(r) dr (since βrQ(r) ≥ 0 for any r ≥ 0)

≤ 2λ

83

Applying the above inequality to the quantity of property (iv), we get the desired result.

E[⟨v,x⟩2 · 1{|⟨w,x⟩| ∈ [c, c+ σ]}] =
∫
|x1|∈[c,c+σ]

∫ ∞

x2=−∞
x22 · qspan(v,w) dx1dx2

≤
∫
|x1|∈[c,c+σ]

∫ ∞

x2=−∞
x22 ·Q

(√
x21 + x22

)
dx1dx2

=

∫
|x1|∈[c,c+σ]

(
2

∫ ∞

r=0

r2 ·Q
(√

x21 + r2
)
dr

)
dx1

≤
∫
|x1|∈[c,c+σ]

(4λ) dx1 ≤ 8λσ

This concludes the proof of Proposition 27.

Proposition 28. There is a universal constant C > 0, such that for any σ > 0, there exists a
continuously differentiable function ℓσ : R→ [0, 1] with the following properties.

1. For any t ∈ [−σ/6, σ/6], ℓσ(t) = 1
2
+ t

σ
.

2. For any t > σ/2, ℓσ(t) = 1 and for any t < −σ/2, ℓσ(t) = 0.

3. For any t ∈ R, ℓ′σ(t) ∈ [0, C/σ], ℓ′σ(t) = ℓ′σ(−t) and |ℓ′′σ(t)| ≤ C/σ2.

Proof. We define ℓσ as follows.

ℓσ(t) =



t
σ
+ 1

2
, if |t| ≤ σ

6

1, if t > σ
2

0, if t < −σ
2

ℓ+(t), t ∈ (σ
6
, σ
2
]

ℓ−(t), t ∈ [−σ
2
,−σ

6
)

for some appropriate functions ℓ+, ℓ−. It is sufficient that we pick ℓ+ satisfying the following
conditions (then ℓ− would be defined symmetrically, i.e., ℓ−(t) = 1− ℓ+(−t)).

• ℓ+(σ/2) = 1 and ℓ+′(σ/2) = 0.

• ℓ+(σ/6) = 2/3 and ℓ+′(σ/6) = 1/σ.

• ℓ+′′ is defined and bounded, except, possibly on σ/6 and/or σ/2.

We therefore need to satisfy four equations for ℓ+. So we set ℓ+ to be a degree 3 polynomial:
ℓ+(t) = a1t

3 + a2t
2 + a3t + a4. Whenever σ > 0, the system has a unique solution that satis-

fies the desired inequalities. In particular, we may solve the equation to get a1 = −9/σ3, a2 =
15/(2σ2), a3 = −3/(4σ) and a4 = 5/8. For the resulting function (see Figure 2-1 below) we

84

Figure 2-1: The function ℓσ used to smoothly approximate the ramp.

have that there are constants c, c′ > 0 such that ℓ+′(t) ∈ [0, c/σ] and |ℓ+′′(t)| ≤ c′/σ2 for any
t ∈ [σ/6, σ/2].

Proposition 29 (PSGD Convergence [DKTZ20a]). Let Lσ be as in Equation (2.2) with σ ∈ (0, 1],
ℓσ as described in Proposition 28, λ ≥ 1 and DXY such that the marginal DX on Rd is λ-nice.
Then for some universal constant C > 0 and for any ϵ > 0 and δ ∈ (0, 1), there is an algorithm
whose time and sample complexity is O(λ

Cd
σ4 + λC log(1/δ)

ϵ4σ4), which, having access to samples from
DXY , outputs a list L of vectors w ∈ Sd−1 with |L| = O(λ

Cd
σ4 + λC log(1/δ)

ϵ4σ4) so that there exists
w ∈ L with

∥∇wLσ(w;DXY)∥2 ≤ ϵ , with probability at least 1− δ .

In particular, the algorithm performs Stochastic Gradient Descent onLσ Projected on Sd−1 (PSGD).

2.6 Proofs from Section 2.3

2.6.1 Proof of Lemma 6

We restate Lemma 6 here for convenience.

Lemma 10 (Lemma 6). LetDXY be a distribution over Rd×{±1}, w ∈ Sd−1, θ ∈ (0, π/4], λ ≥ 1
and δ ∈ (0, 1). Then, for a sufficiently large constant C, there is a tester that given δ, θ, w and a
set S of samples from DX with size at least C ·

(
d4

θ2δ

)
, runs in time poly

(
d, 1

θ
, 1
δ

)
and satisfies the

following specifications:

85

(a) If the tester accepts S, then for every unit vector w′ ∈ Rn satisfying ∡(w,w′) ≤ θ we have

P
x∼S

[sign(⟨w′,x⟩) ̸= sign(⟨w,x⟩)] ≤ C · θ · λC

(b) If the distribution DX is λ-nice, the tester accepts S with probability 1− δ.

Proof. The testing algorithm receives integer d, set S ⊂ Rd, w ∈ Sd−1, θ ∈ (0, π/4], λ ≥ 1 and
δ ∈ (0, 1) and does the following for some sufficiently large universal constant C1 > 0:

1. If Px∈S [|⟨w,x⟩| ∈ [0, θ]] > C1θλ
C1 , then reject.

2. Let proj⊥w : Rd → Rd−1 denote the operator that given any vector in Rd, it outputs its
projection into the (d− 1)-dimensional subspace of Rd that is orthogonal to w.

3. Compute the (d− 1)× (d− 1) matrix MS as follows6:

MS = E
x∈S

[
∞∑
i=2

(proj⊥w x)(proj⊥w x)T

(i− 1)2
1{|⟨w,x⟩| ∈ [(i− 1)θ, iθ)}

]

4. Run the spectral tester of Proposition 26 on MS given δ ← δ, λ← C1λ
C1 and θ ← C1

2
θλC1 ,

i.e., compute ∥MS∥op and if ∥MS∥op > C1θλ
C1 , then reject. Otherwise, accept.

First, suppose the test accepts. For the following, consider the vector w′ ∈ Rd to be an arbitrary
unit vector and v ∈ Rd to be the unit vector that is perpendicular to w, lies within the plane defined
by w and w′ and ⟨v,w′⟩ ≤ 0. Then we have:

P
x∼S

[sign(⟨w′,x⟩) ̸= sign(⟨w,x⟩)] ≤

≤
∞∑
i=1

P
x∼S

[
|⟨v,x⟩| > θ

tan θ
· (i− 1)︸ ︷︷ ︸

Implies |⟨v,x⟩|>(i−1)/2

& |⟨w,x⟩| ∈ [(i− 1)θ, iθ]
]

≤ P
x∈S

[|⟨w,x⟩| ∈ [0, θ]]︸ ︷︷ ︸
≤C1θλC1

+4
∞∑
i=2

Ex∼S

[
⟨v,x⟩21|⟨w,x⟩|∈[(i−1)θ,iθ]

]
(i− 1)2︸ ︷︷ ︸

⟨proj⊥w v,M proj⊥w v⟩≤∥M∥op≤C1θλC1

≤ 5C1θλ
C1

For part (b), we suppose that the distribution DX is indeed λ-nice. We will show that with
probability at least 1− δ, the tester will accept, i.e., that

P
x∈S

[|⟨w,x⟩| ∈ [0, θ]] ≤ C1θλ
C1 and (2.3)

∥MS∥op ≤ C1θλ
C1 (2.4)

6Note that only at most |S| many terms below are non-zero, hence MS can be computed efficiently.

86

We first observe that the corresponding quantities under distribution DX due to Proposition 27. In
particular, we have that for some universal constant C ′ > 0

P
x∈DX

[|⟨w,x⟩| ∈ [0, θ]] ≤ C ′θλC
′

and (2.5)

E
x∈DX

[⟨v′,x⟩2 · 1{|⟨w,x⟩| ∈ [c, c+ θ]}] ≤ C ′θλC
′

for any v′ ∈ Sd−1 and c ≥ 0 (2.6)

If we let MDX = EDX [MS], we get that

∥MDX ∥op = sup
u∈Sd−2

uTMDXu = sup
v′∈Sd−1:⟨v′,w⟩=0

(proj⊥w v′)TMDX (proj⊥w v′)

≤
∞∑
i=2

1

(i− 1)2
sup

v′∈Sd−1

E
x∈DX

[⟨v′,x⟩2 · 1{|⟨w,x⟩| ∈ [c, c+ θ]}]

≤
∞∑
i=2

1

(i− 1)2
sup

v′∈Sd−1

C ′θλC
′ ≤ C ′π2

6
θλC

′

By Proposition 26, in order to satisfy expression (2.4), it remains to show that Ez∼D[(zℓzj)
2] ≤

C1λ
C1 for any ℓ, j ∈ [d], where z is defined as follows

z =
∞∑
i=2

proj⊥w x

(i− 1)
1|⟨w,x⟩|∈[(i−1)θ,iθ).

Since Ez∼D[(zℓzj)
2] ≤ Ez∼D[⟨u,x⟩2⟨u′,x⟩2], for some unit vectors u,u′ ∈ Sd−1 (orthogonal to

w), the desired bound follows from Proposition 27.
It remains to bound the absolute distance between the quantities of the left hand side of expres-

sions (2.3) and (2.5). This can be achieved by an application of the Hoeffding bound, since the
empirical version of the quantity is the average of independent Bernoulli random variables.

2.6.2 Proof of Lemma 7

We restate Lemma 7 here for convenience.

Lemma 11 (Universally Testable Weak Anti-Concentration). Let D be a distribution over Rd.
Then, there is a universal constant C > 0 and a tester that given a unit vector w ∈ Rd, δ ∈ (0, 1),
γ > 0, λ ≥ 1, σ ≤ 1

2λ
and a set S of i.i.d. samples from D with size at least C · d4

σ2δ
log(d)λC , runs

in time poly(d, λ, 1
σ
, 1
δ
, log

(
1
γ

)
) and satisfies the following specifications

(a) If the tester accepts S, then for any unit vector v ∈ Rd with ⟨v,w⟩ = 0 we have

P
x∈S

[
|⟨v,x⟩| ≥ 1

CλC

∣∣∣∣ |⟨w,x⟩| ≤ σ

]
≥ 1

CλCγ4

87

(b) If D is γ-Poincaré and λ-nice, then the tester accepts S with probability at least 1− δ.

Proof. The testing algorithm receives a set S ⊂ Rd, w ∈ Sd−1, δ ∈ (0, 1), γ > 0, λ ≥ 1 and
σ ≤ 1

2λ
and does the following for some sufficiently large C1 > 0:

1. If Px∈S[|⟨w,x⟩| ≤ σ] > 2σ · C1λ
C1 , then reject.

2. Compute the (d− 1)× (d− 1) matrix MS as follows:

MS = E
x∈S

[
(proj⊥w x)(proj⊥w x)T · 1{|⟨w,x⟩ ≤ σ|}

]
3. Run the spectral tester of Proposition 26 on MS given δ ← δ, λ ← C1λ

C1 and θ ← 2σ
C1λC1

,
i.e., reject if the minimum singular value of MS is less than 2σ

C1λC1
.

4. Run the hypercontractivity tester (Prop. 24) on S ′ = {proj⊥w x : x ∈ S and |⟨w,x⟩| ≤ σ},
i.e., solve an appropriate SDP and reject if the solution is larger than a specified threshold.
Otherwise, accept.

For part (a), we apply the Paley–Zygmund inequality to the random variable Z = ⟨v,x⟩2
condtitioned on |⟨w,x⟩| ≤ σ and get

P
x∈S

[
⟨v,x⟩2 ≥ 1

2
E

x∈S

[
⟨v,x⟩2

∣∣∣ |⟨w,x⟩| ≤ σ
] ∣∣∣∣ |⟨w,x⟩| ≤ σ

]
≥ (Ex∈S[⟨v,x⟩2 | |⟨w,x⟩| ≤ σ])2

4Ex∈S[⟨v,x⟩4 | |⟨w,x⟩| ≤ σ]

Note that since ⟨v,w⟩ = 0, we have ⟨v,x⟩ = ⟨proj⊥w v, proj⊥w x⟩ (where ∥v∥2 = ∥ proj⊥w v∥2).
Therefore, since S has passed the spectral tester as well as the tester for the probability of lying
within the strip |⟨w,x⟩| ≤ σ, we have that

E
x∈S

[
⟨v,x⟩2

∣∣∣ |⟨w,x⟩| ≤ σ
]
=

Ex∈S [⟨v,x⟩2 · 1{|⟨w,x⟩| ≤ σ}]
Px∈S[|⟨w,x⟩| ≤ σ]

≥ 1

2C1λ2C1

Moreover, {x ∈ S : |⟨w,x⟩| ≤ σ} has passed the hypercontractivity tester, and therefore, accord-
ing to Proposition 24 we have

E
x∈S

[
⟨v,x⟩4

∣∣∣ |⟨w,x⟩| ≤ σ
]
≤ C1 · γ4

Combining the above inequalities we conclude the proof of part (a).
For part (b), we assume that D is indeed λ-nice and γ-Poincaré. We first use Proposition 27 as

well as a Hoeffding bound, to get that Px∈S[|⟨w,x⟩| ≤ σ] ∈ [2σ
C′λC′ , 2σ · C ′λC

′
] with probability at

least 1− δ/3 over S (since |S| is large enough), for some universal constant C ′ > 0. Then, we use
part (ii) of Proposition 27 to lower bound the minimum eigenvalue of MD = ED[MS] by 4σ

C′λC′ .
Using part (iii) of Proposition 27 to bound the second moment of each of the elements of MD, we
may use Proposition 26 to get that MS ⪰ 2σ

C′λC′ Id−1 (and our spectral test passes) with probability

88

at least 1 − δ/3. It remains to show that the hypercontractivity tester will accept with probability
at least 1− δ/3 (since, then, the result follows from a union bound).

We acquire samples from the hypercontractivity tester through rejection sampling (we keep
only the samples within the strip). Since the probability of falling inside the strip is at least 2σ

C′λC′ ,
the number of samples we will keep is at least |S ′| ≥ |S|σ

C′′λC′ , for some large enough constant
C ′′ > 0 (due to Chernoff bound) and with probability at least 1 − δ/6. We now apply Lemma 9
to get that the distribution of proj⊥w x conditioned on the strip |⟨w,x⟩| ≤ σ is γ-Poincaré, since
D is also γ-Poincaré. Hence, the hypercontractivity tester accepts with probability at least 1− δ/6
due to Proposition 24.

2.7 Proofs from Section 2.4

2.7.1 Proof of Proposition 25

We restate Proposition 25 here for completeness.

Proposition 30 (Modification from [DKTZ20a, DKTZ20b]). For a distribution DXY over Rd ×
{±1} let opt be the minimum error achieved by some origin-centered halfspace and w∗ ∈ Sd−1 a
corresponding vector. Consider Lσ as in Equation (2.2) for σ > 0 and let η < 1/2. Let w ∈ Sd−1

with ∡(w,w∗) = θ < π
2

and v ∈ span(w,w∗) such that ⟨v,w⟩ = 0 and ⟨v,w∗⟩ < 0. Then, for
some universal constant C > 0 and any α ≥ σ

2 tan θ
we have ∥∇wLσ(w;DXY)∥2 ≥ A1−A2−A3,

where

A1 =
α

C · σ
· P
[
|⟨v,x⟩| ≥ α and |⟨w,x⟩| ≤ σ

6

]
A2 =

C

tan θ
· P
[
|⟨w,x⟩| ≤ σ

2

]
and A3 =

C

σ
·
√
opt ·

√
E
[
⟨v,x⟩2 · 1{|⟨w,x⟩|≤σ

2
}

]
Moreover, if the noise is Massart with rate η, then ∥∇wLσ(w;DXY)∥2 ≥ (1− 2η)A1 − A2.

Proof. For any vector x ∈ Rd, let: xw = ⟨w,x⟩ and xv = ⟨v,x⟩. It follows that projV (x) =
xve1 + xwe2, where projV is the operator that orthogonally projects vectors on V . Using the fact
that ∇w(⟨w,x⟩/∥w∥2) = x − ⟨w,x⟩w = x − xww for any w ∈ Sd−1, the interchangeability of
the gradient and expectation operators and the fact that ℓ′σ is an even function we get that

∇wLσ(w) = E
[
− ℓ′σ(|⟨w,x⟩|) · y · (x− xww)

]
Since the projection operator projV is a contraction, we have ∥∇wLσ(w)∥2 ≥ ∥projV ∇wLσ(w)∥2,
and we can therefore restrict our attention to a simpler, two dimensional problem. In particular,

89

Figure 2-2: The Gaussian mass in each of the regions labelled A1 and A2 is proportional to the
corresponding term appearing in the statement of Proposition 25.

As σ tends to 0, the Gaussian mass of region A2 shrinks faster than the one of region A1, since both the
height (σ) and the width (σ

tan θ) of A2 are proportional to σ, while the width of A1 is not affected (the
height is σ/3). Lemma 8 demonstrates that a similar property is universally testable under any nice Poincaré
distribution.

since projV (x) = xve1 + xwe2, we get

∥projV ∇wLσ(w)∥2 =
∣∣∣E[− ℓ′σ(|xw|) · y · xv

]∣∣∣
=
∣∣∣E[− ℓ′σ(|xw|) · sign(⟨w∗,x⟩) · (1− 21{y ̸= sign(⟨w∗,x⟩)}) · xv

]∣∣∣
Let F (y,x) denote 1−21{y ̸= sign(⟨w∗,x⟩)}. We may write xv as |xv| ·sign(xv) and let G ⊆ R2

such that sign(xv) · sign(⟨w∗,x⟩) = −1 iff x ∈ G.
Then, sign(xv) · sign(⟨w∗,x⟩) = 1{x ̸∈ G} − 1{x ∈ G}. We get

∥projV ∇wLσ(w)∥2 =

=
∣∣∣E[ℓ′σ(|xw|) · (1{x ∈ G} − 1{x ̸∈ G}) · F (y,x) · |xv|·

]∣∣∣
≥ E

[
ℓ′σ(|xw|) · 1{x ∈ G} · F (y,x) · |xv|

]
− E

[
ℓ′σ(|xw|) · 1{x ̸∈ G} · F (y,x) · |xv|

]
Let A′

1 = E[ℓ′σ(|xw|) ·1{x ∈ G} ·F (y,x) · |xv|] and A′
2 = E[ℓ′σ(|xw|) ·1{x ̸∈ G} ·F (y,x) · |xv|].

In the Massart noise case Ey|x[F (y,x)] = 1−2η(x) ∈ [1−2η, 1], where 1−2η > 0. Therefore,
we have that A′

1 ≥ (1− 2η) ·E[ℓ′σ(|xw|) ·1{x ∈ G} · |xv|]. When the noise is adversarial, we have
A′

1 ≥ E[ℓ′σ(|xw|) · 1{x ∈ G} · |xv|]− 2E[ℓ′σ(|xw|) · 1{x ∈ G} · 1{y ̸= sign(⟨w∗,x⟩)} · |xv|].

90

For any α ≥ σ
2 tan θ

, we have that

E
[
ℓ′σ(|xw|) · 1{x ∈ G} · |xv|

]
≥ E

[
ℓ′σ(|xw|) · 1{x ∈ G} · 1{|xw|≤σ

6
} ·|xv|

]
(since terms are positive)

≥ E
[
1

σ
· 1{x ∈ G} · 1

{
|xw| ≤

σ

6

}
· |xv|

]
(by Proposition 28)

≥ α

σ
· E
[
1{x ∈ G} · 1{|xw|≤σ

6
} ·1{|xv|≥α}

]
≥ α

σ
· E
[
1{|xw|≤σ

6
} ·1{|xv|≥α}

]
(see Figure 2-2)

=
α

σ
· P
[
|xw| ≤

σ

6
and |xv| ≥ α

]
def
= A1

Moreover, for some universal constant C ′ > 0, we similarly have

E
[
ℓ′σ(|xw|) · 1{x ̸∈ G} · F (y,x) · |xv|

]
≤ E

[
ℓ′σ(|xw|) · 1{x ̸∈ G} · |xv|

]
(since F (y,x) ≤ 1)

≤ E
[
C ′

σ
· 1{|xw|≤σ

2
} ·1{x ̸∈ G} · |xv|

]
(by Proposition 28)

≤ C ′

σ
· E
[
1{|xw|≤σ

2
} ·1{|xv|≤ σ

2 tan θ
} ·|xv|

]
(see Figure 2-2)

≤ C ′

2 · tan θ
· E
[
1{|xw|≤σ

2
} ·1{|xv|≤ σ

2 tan θ
}

]
≤ C ′

2 · tan θ
· P
[
|xw| ≤

σ

2

]
def
= A2

Hence, we have shown that, in the Massart noise case, we have ∥∇wLσ(w)∥2 ≥ (1− 2η)A1 −A2

as desired. For the adversarial noise case, it remains to bound the following quantity

2E
[
ℓ′σ(|xw|) · 1{x∈G} · 1{y ̸=sign(⟨w∗,x⟩)} ·|xv|

]
≤

≤ 2C ′

σ
· E
[
1{x∈G} ·1{|xw|≤σ

2
} ·1{y ̸=sign(⟨w∗,x⟩)} ·|xv|

]
≤ 2C ′

σ
· E
[
1{|xw|≤σ

2
} ·1{y ̸=sign(⟨w∗,x⟩)} ·|xv|

]
≤ 2C ′

σ
·
√
opt ·

√
E
[
|xv|2 · 1{|xw|≤σ

2
}

]
def
= A3

where the final inequality follows from Cauchy-Schwarz inequality.

91

2.7.2 Proof of Lemma 8

We restate Lemma 8 here for convenience.

Lemma 12 (Universally Testable Structure of Surrogate Loss). Let DXY be any distribution over
Rd × {±1}. Consider Lσ as in Equation (2.2). Then, there is a universal constant C > 0 and a
tester that given a unit vector w ∈ Rd, δ ∈ (0, 1), η < 1/2, γ > 0, λ ≥ 1, σ ≤ 1

CλC and a set S of

i.i.d. samples from DXY with size at least C · d4

σ2δ
log(d)λC , runs in time poly(d, λ, 1

σ
, 1
δ
, log

(
1
γ

)
)

and satisfies the following specifications

(a) If the tester accepts S, then, the following statements are true for the minimum error optS
achieved by some origin-centered halfspace on S and the optimum vector w∗

S ∈ Sd−1

• If the noise is Massart with associated rate η and ∥∇wLσ(w;S)∥2 ≤ 1−2η
CλCγ4 then either

∡(w,w∗
S) ≤

CλC(1+γ4)
1−2η

· σ or ∡(−w,w∗
S) ≤

CλC(1+γ4)
1−2η

· σ.

• If the noise is adversarial with optS ≤ σ
CλC and ∥∇wLσ(w;S)∥2 <

1
CλCγ4 then either

∡(w,w∗
S) ≤ CλC(1 + γ4) · σ or ∡(−w,w∗

S) ≤ CλC(1 + γ4) · σ.

(b) If the marginal DX is λ-nice and γ-Poincaré, then the tester accepts S with probability at
least 1− δ.

Proof of Lemma 8. The testing algorithm receives w ∈ Sd−1, δ ∈ (0, 1), η < 1/2, γ > 0, λ ≥ 1,
σ ≤ 1

2λ
and a set S ⊂ Rd × {±1} and does the following for some sufficiently large C1 > 0

1. If P(x,y)∈S[|⟨w,x⟩| ≤ σ
6
] ≤ σ

C1λC1
or P(x,y)∈S[|⟨w,x⟩| ≤ σ

2
] > σ · C1λ

C1 , then reject.

2. Compute the (d− 1)× (d− 1) matrices M+
S and M−

S as follows:

M+
S = E

(x,y)∈S

[
(proj⊥w x)(proj⊥w x)T · 1{|⟨w,x⟩|≤σ

2
}

]
M−

S = E
(x,y)∈S

[
(proj⊥w x)(proj⊥w x)T · 1{|⟨w,x⟩|≤σ

6
}

]
3. Run the (maximum singular value) spectral tester of Proposition 26 on M+

S given δ ← δ
4
,

λ ← C1λ
C1 and θ ← C1σλC1

2
, i.e., reject if the maximum singular value of M+

S is greater
than σ · C1λ

C1 .

4. Run the (minimum singular value) spectral tester of Proposition 26 on M−
S given δ ← δ

4
,

λ ← C1λ
C1 and θ ← 2σ

C1λC1
, i.e., reject if the minimum singular value of M−

S is less than
σ

C1λC1
.

5. Run the hypercontractivity tester on S ′ = {proj⊥w x : (x, y) ∈ S and |⟨w,x⟩| ≤ σ}, i.e.,
solve an appropriate SDP (see Prop. 24 with γ ← γ, δ ← δ/4) and reject if the solution is
larger than a specified threshold. Otherwise, accept.

92

For part (a), we suppose that the testing algorithm has accepted S. Therefore, S has passed all
the tests required for part (a) of Lemma 7 and there exists a universal constant C ′ > 0 such that

P
(x,y)∈S

[
|⟨v,x⟩| ≥ 1

C ′λC′

∣∣∣∣ |⟨w,x⟩| ≤ σ

]
≥ 1

C ′λC′γ4

Moreover, we have σ
C′λC′ < P(x,y)∈S[|⟨w,x⟩| ≤ σ

6
] ≤ P(x,y)∈S[|⟨w,x⟩| ≤ σ

2
] < σ · C ′λC

′ and

E
(x,y)∈S

[
⟨v,x⟩2

∣∣∣ |⟨w,x⟩| ≤ σ

2

]
≤ C ′λC

′

E
(x,y)∈S

[
⟨v,x⟩2

∣∣∣ |⟨w,x⟩| ≤ σ

6

]
≥ 1

C ′λC′

Since Proposition 25 holds for any distribution, it will also hold for the empirical distribution
(uniform on S). We apply Proposition 25 with α = 1

C′λC′ to lower bound ∥∇wLσ(w;S)∥2 (or
∥∇wLσ(−w;S)∥2) as follows

∥∇wLσ(w;S)∥2 ≥ A1(α)− A2 − A3 (adversarial noise case)
∥∇wLσ(w;S)∥2 ≥ (1− 2η) · A1(α)− A2 (Massart noise case)

Combining the above inequalities with the bounds implied by the fact that S has passed the tests,
concludes the proof of part (a), since (after observing that tan θ ≥ θ) we get

∥∇wLσ(w;S)∥2 ≥
3

CλCγ4
−
√
CσλC/2

θ
−
√

opt · C · λC
σ

(adversarial noise case)

∥∇wLσ(w;S)∥2 ≥
3(1− η)
CλCγ4

−
√
CσλC/2

θ
(Massart noise case)

For part (b), we follow a similar recipe as the one used to prove part (b) of Lemma 7, i.e., we
use the following reasoning to show that the tests will pass with probability at least 1− δ

1. We assume that the marginal distribution DX is λ-nice and γ-Poincaré.

2. We use Proposition 27 to bound the values of the tested quantities under the true distribution.

3. We use appropriate concentration results (Hoeffding/Chernoff Bounds and Proposition 26)
to show that, since |S| is large enough, each of the empirical quantities at hand does not
deviate a lot from its mean.

This concludes the proof of Lemma 8.

2.7.3 Proof of Main Theorem

We restate the main Theorem here for convenience.

93

Theorem 12 (Efficient Universal Tester-Learner for Halfspaces). LetDXY be any distribution over
Rd × {±1}. Let C be the class of origin centered halfspaces in Rd. Then, for any λ ≥ 1, γ > 0,
ϵ > 0 and δ ∈ (0, 1), there exists an universal tester-learner for C w.r.t. the class of λ-nice and
γ-Poincaré marginals up to error poly(λ) · (1 + γ4) · opt + ϵ, where opt = minw∈Sd−1 PDXY [y ̸=
sign(⟨w,x⟩)], and error probability at most δ, using a number of samples and running time
poly(d, λ, γ, 1

ϵ
, log 1

δ
).

Moreover, if the noise is Massart with given rate η < 1/2, then the algorithm achieves error
opt + ϵ with time and sample complexity poly(d, λ, γ, 1

ϵ
, 1
1−2η

, log 1
δ
).

Proof of Theorem 11. Note that we will give the algorithm for δ ← δ′ = 1/3 since we can reduce
the probability of failure with repetition (repeat O(log 1

δ
) times, accept if the rate of acceptance is

Ω(1) and output the halfspace achieving the minimum test error among the halfspaces returned).
For reader’s convenience, we now restate the algorithm on page 77 (note that together with the

algorithm we include additional detail relevant to the analysis). The algorithm receives λ ≥ 1,
γ > 0, ϵ > 0 and η ∈ (0, 1/2) ∪ {1} (say η = 1 when we are in the agnostic case) and does the
following for some appropriately large universal constant C1, C2 > 0.

1. First, create a set of parameters Σ and parameters E = ϵ
C1λC1

and A > 0 as follows. If
η = 1, then Σ is an E

C1λC1
-cover of the interval

[
0, 1

C1λC1

]
and A = 1

C1λC1γ4 . Otherwise, let

Σ =
{ E·(1−2η)

C1λC1 (1+γ4)

}
and A = 1−2η

C1λC1γ4 .

2. Then, draw a set S1 of C2

(
λd
γϵ

)C2

i.i.d. samples from DXY and run PSGD, as specified in

Proposition 29 with ϵ← A, δ ← δ′

C1
on the loss Lσ for each σ ∈ Σ.

3. Form a list L with all the pairs of the form (w, σ) where w ∈ Sd−1 is some iterate of the
PSGD subroutine performed on Lσ.

4. Draw a fresh set S2 of C2

(
λd
γϵ

)C2

i.i.d. samples from DXY and compute for each (w, σ) ∈ L
the value ∥∇wLσ(w;S2)∥2. If, for some σ ∈ Σ, ∥∇wLσ(w;S2)∥2 > A for all (w, σ) ∈ L,
then reject.

5. Update L by keeping for each σ ∈ Σ only one pair of the form (w, σ) for which we have
∥∇wLσ(w;S2)∥2 ≤ A.

6. Run the following tests for each (w, σ) ∈ L to ensure that part (a) of Lemma 8 holds for
each of the elements of L, i.e., that any stationary point of the surrogate loss that lies in L is
angularly close to the empirical risk minimizer (or the same holds for the inverse vector).

• If P(x,y)∈S2 [|⟨w,x⟩| ≤ σ
6
] ≤ σ

C1λC1
or P(x,y)∈S2 [|⟨w,x⟩| ≤ σ

2
] > σ · C1λ

C1 , then reject.

94

• Compute the (d− 1)× (d− 1) matrices M+
S2

and M−
S2

as follows:

M+
S2

= E
(x,y)∈S2

[
(proj⊥w x)(proj⊥w x)T · 1{|⟨w,x⟩|≤σ

2
}

]
M−

S2
= E

(x,y)∈S2

[
(proj⊥w x)(proj⊥w x)T · 1{|⟨w,x⟩|≤σ

6
}

]
• Run the (maximum singular value) spectral tester of Proposition 26 on M+

S2
given δ ←

δ′

C1
, λ ← C1λ

C1 and θ ← C1σλC1

2
, i.e., reject if the maximum singular value of M+

S2
is

greater than σ · C1λ
C1 .

• Run the (minimum singular value) spectral tester of Proposition 26 on M−
S2

given δ ←
δ′

C1
, λ ← C1λ

C1 and θ ← 2σ
C1λC1

, i.e., reject if the minimum singular value of M−
S2

is
less than σ

C1λC1
.

• Run the hypercontractivity tester on S ′ = {proj⊥w x : (x, y) ∈ S2 and |⟨w,x⟩| ≤ σ},
i.e., solve an appropriate SDP (see Prop. 24 with γ ← γ, δ ← δ′/C1) and reject if the
solution is larger than a specified threshold.

7. Run the following tests for each pair of the form (w, σ) and (−w, σ) where (w, σ) ∈ L
to ensure that part (a) of Lemma 6 is activated, i.e., that the distance of a vector from the
empirical risk minimizer is an accurate proxy for the error of the corresponding halfspace.
Set θ(σ) = (1+γ4)σ

Aγ4 .

• If P(x,y)∈S2 [|⟨w,x⟩| ≤ θ] > C1λ
C1θ then reject.

• Compute the (d− 1)× (d− 1) matrix MS2 as follows7:

MS2 = E
(x,y)∈S2

[
∞∑
i=2

(proj⊥w x)(proj⊥w x)T

(i− 1)2
1{|⟨w,x⟩| ∈ [(i− 1)θ, iθ)}

]

• Run the spectral tester of Proposition 26 on MS given δ ← δ′

C1
, λ ← C1λ

C1 and
θ ← C1

2
θλC1 , i.e., compute ∥MS∥op and if ∥MS∥op > C1θλ

C1 , then reject.

8. Otherwise, accept and output the vector w that achieves the smallest empirical error on S2

among the vectors in the list L.

For the following, let α = 1 in the Massart noise case and α = C1λ
C1γ4 in the adversarial

noise case. Consider also optS2
to be the error of the origin-centered halfspace with the minimum

empirical error on S2 and w∗
S2

the corresponding optimum vector.

7Note that only at most |S2| many terms below are non-zero, hence MS2
can be computed efficiently.

95

Soundness. We first prove the soundness condition, i.e., that the following implication holds
with probability at least 1− δ′ over the samples:

If the tester accepts, then P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ α · opt + ϵ

The tester accepts only if for every σ ∈ Σ, we have some w ∈ L with ∥∇wLσ(w;S2)∥2 ≤ A (step
4) and for which part (a) of each of Lemmas 8 (step 6) and 6 (step 7) is activated. Therefore, in the
Massart noise case, for any σ ∈ Σ, there is some w such that either (w, σ) ∈ L or (−w, σ) ∈ L
and also

∡(w,w∗
S2
) ≤ 1 + γ4

γ4
· σ
A

def
= θ (2.7)

P
S2

[y ̸= sign(⟨w,x⟩)] ≤ optS2
+ C ′λC

′ · θ (2.8)

In the adversarial noise case, the above are true conditional on σ being such that optS2
≤ σ

C′λC′ .

Therefore, in the Massart noise case, the above are true for σ = E(1−2η)

C1λC1 (1+γ4)
which gives

P
S2

[y ̸= sign(⟨w,x⟩)] ≤ optS2
+ C ′λC

′
E

In the agnostic case, condition 2.8 is true for some σ ∈ [0, 1
C1λC1

] such that

σ

C ′λC′ −
1

C1λC1
≤ optS2

≤ σ

C ′λC′

unless opt > 1

C1C′λC1+C′ , in which case any halfspace has error at most 1 = opt · (C1C
′λC1+C′

).
Hence we get

P
S2

[y ̸= sign(⟨w,x⟩)] ≤ poly(λ) · (1 + γ4) · optS2
+ C ′λC

′
E

Soundness follows from the fact that if |S2| is sufficiently large (but still polynomial in every
parameter, since the VC dimension of the class of halfspaces in Rd is d+ 1), then |optS2

− opt| ≤
ϵ

C1λC1 (1+γ)4
with probability at least 1− δ′.

Completeness. Suppose now that the marginal is indeed λ-nice and γ-Poincaré. Then, for suf-
ficiently large S1, after step 3, L will contain a stationary point of Lσ(· ;DXY) for each σ ∈ Σ,
due to Proposition 29. If S2 is large enough, then steps 4, 6 and 7 will each accept with probability
at least 1 − δ′/C1, due to part (b) of Lemmas 8 and 6, as well as the fact that each coordinate of
∇wLσ(w;S2) has bounded second moment (Proposition 27) and therefore ∇wLσ(w;S2) is con-
centrated around ∇wLσ(w;DXY) for any fixed w such that (w, σ) ∈ L (we also need a union
bound over L). Hence, in total, the tester will accept with probability at least 1− δ′.

96

Chapter 3

Testable Learning with Distribution Shift

3.1 Chapter Overview.

Mitigating distribution shift remains one of the major challenges of machine learning. Training
distributions can deviate significantly from test distributions, and pre-trained models are commonly
deployed without a precise understanding of these differences. In such cases, a model may have
poor performance with potentially dangerous consequences. For example, several recent studies in
the AI/healthcare community highlight the lack of generalization among many AI models trained to
detect disease (e.g., skin cancer or pneumonia), often due to distribution shift. As such, developing
best practices for using these models in a clinical setting remains a vexing and difficult problem
[ZBL+18, WOD+21, TCK+22].

The computational landscape of traditional supervised learning— where training sets and tests
are drawn from the same distribution— is by now well understood. There is a rich literature of
efficient algorithms and computational hardness results for broad sets of concept classes and distri-
butions. In contrast, little is known in terms of efficient algorithms for classification in the context
of distribution shift or domain adaptation. The most common approach is to prove a generalization
bound in terms of some notion of distance between D and D′ [BDBCP06, BDBC+10, MMR09].
These distances, however, involve an enumeration of all functions in the underlying concept class
and seem difficult to compute. Other recent work requires oracles for empirical risk minimization
[GKKM20, KK21] or the existence of distribution-free reliable learners, which are believed to re-
quire superpolynomial time for even simple concept classes (e.g., reliably learning conjunctions is
known to be harder than PAC learning DNF formulas) [KK21, Section 4.2].

In this chapter we define a new model called testable learning with distribution shift (TDS
learning) and show that this model does admit efficient algorithms for several well-studied concept
classes and distributions. Inspired by recent work in testable learning developed in Chapter 1,
Chapter 2 and [GKK23, DKK+23], we allow a learner to reject unlessD andD′ pass an efficiently
computable test. Whenever the test accepts, the learner outputs a classifier that is assured to have
low error with respect toD′. Further, we require that the test accept with high probability whenever
the marginal of D equals the marginal of D′. This approach allows us to take no assumptions on

97

D′ whatsoever and still provide meaningful guarantees.
It is easy to see that TDS learning generalizes the traditional PAC model of learning, and,

moreover, TDS learning seems considerably more challenging. For example, even an algorithm
to amplify the success probability of a TDS learner is nontrivial, since we do not get to see la-
beled examples from D′ (we show how to do this in Section 3.13). It is also tempting to apply
property testing algorithms in this setting to “detect” when D is “close” to D′, but even for simple
cases, distribution testing requires an exponential (in the dimension) number of samples (see e.g.
[Can22]). While testable learning and TDS learning both encounter similar issues, they are fun-
damentally distinct models. Specifically, the realizable setting, where there exists a classifier with
zero train and test loss, is a trivial case in testable learning. We further discuss separations among
these models in Section 3.1.3.

3.1.1 Our Results

Here we formally define TDS learning and summarize our main results. For readability, we
have placed some notation and basic definitions in Section 3.6.

Learning Setup. Let C be a function class over Rd and D be a distribution over Rd. Suppose A
is given as input a set Strain consisting of i.i.d. examples from D labelled by some f ∈ C, together
with a set of i.i.d. unlabelled examples Xtest from some distribution Dtest

X over Rd. The algorithm
A is allowed to either output REJECT or (ACCEPT, f̂) for some concept f̂ . The algorithm A is a
TDS-learning algorithm for C under distribution D if it satisfies the following two properties:

1. Soundness. With probability 1−δ, if the algorithmA outputs (ACCEPT, f̂), then hypothesis
f̂ satisfies Px∈Dtest

X
[f(x) ̸= f̂(x)] ≤ ϵ.

2. Completeness. If Dtest
X = D, then with probability 1− δ, the algorithm A accepts.

TDS Learning: the Agnostic Setting. Sometimes the training data or the testing data cannot be
captured perfectly by any function in the function class C and, instead, follow labeled distributions
Dtrain

XY ,Dtest
XY , where the marginal of Dtrain

XY is Dtrain
X = D and Dtrain

XY ,Dtest
XY are otherwise arbitrary.

We extend our setup to apply in this setting as well. To this end, a key quantity is the smallest
sum of expected training error and expected test error among all functions in the concept class C,
i.e. λ = minf∈C err(f ;Dtrain

XY) + err(f ;Dtest
XY), where err(f ;DXY) = P(x,y)∼DXY [y ̸= f(x)]. We

denote this quantity as λ, and note that it is standard in the domain adaptation literature (see, e.g.,
[BDBCP06, BCK+07, BDBC+10, DLLP10]).

With this definition at hand, we modify the soundness condition to require that with probability
1−δ, if the algorithmA outputs (ACCEPT, f̂), then hypothesis f̂ satisfies P(x,y)∼Dtest

XY
[y ̸= f̂(x)] ≤

O(λ) + ϵ. In Theorem 25, we show that a dependence of Ω(λ) is unavoidable.

Proposition 31. No TDS learning algorithm can have an error guarantee better than Ω(λ) + ϵ.

98

Results. We show that TDS learning can be achieved efficiently for a number of natural high-
dimension function classes. These include halfspaces, decision trees, intersections of halfspaces
and low-depth formulas. See Table 3.1 for the full list.

Function class Training Distribution TDS Setting Run-time

1 Homogeneous
halfspaces

Isotropic Log-Concave Agnostic poly (d/ϵ)
(Theorem 13)

2 General halfs-
paces

Standard Gaussian Realizable dO(log 1/ϵ)

(Theorem 15)

3 General halfs-
paces

Standard Gaussian
Uniform on {±1}d Agnostic dÕ(1/ϵ

2)

(Corollary 4)

4 Intersection of ℓ
halfspaces

Standard Gaussian
Uniform on {±1}d Agnostic dÕ(ℓ6/ϵ2)

(Corollary 4)

5 Decision trees of
size s

Uniform on {±1}d Agnostic dO(log(s/ϵ))

(Corollary 2)

6 Formulas of size
s, depth ℓ

Uniform on {±1}d Agnostic d
√
s·O(log(s/ϵ))

5ℓ
2

(Corollary 3)

Table 3.1: Our TDS learning results for various function classes. Since agnostic TDS learning is
more general than realizable TDS learning, algorithms for the agnostic setting also apply to the
realizable setting.

Given the abundance of positive results, it is natural to ask whether TDS learning can always
be achieved efficiently for any function class F that can be efficiently PAC-learned under a distri-
bution D. We answer this question in the negative by proving separations between TDS learning
and PAC learning. Our separations hold for the natural and well-studied function classes of mono-
tone functions over {±1}d and convex sets over Rd (under uniform distribution on {±1}d and the
standard Gaussian distribution respectively). Even though for these function classes there are well-
known PAC-learning algorithms [BT96, KOS08] that run in time 2Õ(

√
d poly(1/ϵ)), we show that any

TDS-learning algorithm for these function classes needs to run in time 2Ω(d).

3.1.2 Techniques

Here we summarize the technical ideas that we use to develop the TDS learning algorithms in
Table 3.1.

Moment Matching/Sandwiching Polynomials. We present a general approach for obtaining
TDS learning algorithms for a wide variety of function classes via a moment matching approach.

99

In brief, the algorithm for this approach is as follows:

• Estimate all the degree-k moments of Dtest
X up to a high accuracy. REJECT if some of the

moments are not close to the corresponding moments of D.

• Otherwise, fit the best degree-k polynomial p on the training data, and output (ACCEPT,
sign(p)).

This algorithm above runs in time dO(k), and we show that this algorithm is a valid TDS-
learning algorithm for the wide class of functions whose L2-sandwiching degree is bounded by
k, which we define as follows: For an approximation parameter ϵ, the L2-sandwiching degree of a
function f is the smallest degree for a pair of polynomials pdown and pup satisfying: i) pdown(x) ≤
f(x) ≤ pup(x) for all x in the learning domain and ii) Ex∼D[(pup(x)− pdown(x))

2] ≤ ϵ.
The related notion of L1-sandwiching was recently used to obtain several results in testable

learning [GKK23]. These results, however, do not seem to apply to TDS learning1 More specifi-
cally, a bound on the L1-sandwiching degree and low-degree moment matching would imply the
existence of low-degree polynomials with low test error. However, in testable learning with distri-
bution shift, we do not have access to these polynomials, since test labels are not available. Instead,
we prove a “transfer lemma” showing that we can relate the test error under Dtest

X of a polynomial
to its training error under D by leveraging the simple fact that the squared loss between two poly-
nomials is itself a polynomial. As such, low-degree moment matching between the training and
test marginals ensures that the squared loss between any pair of low-degree polynomials is approx-
imately preserved (Lemma 13). Absolute loss cannot be computed by a low-degree polynomial,
ruling out this type of transfer lemma based on L1-sandwiching.

Even though we need the more stringent property of small L2-sandwiching degree, we show
that constructions from works in the pseudorandomness literature that explicitly construct L1-
sandwiching polynomials (e.g., [DGJ+10] and [GOWZ10]) can be extended to bound the L2-
sandwiching degree. This allows us to obtain efficient TDS learning algorithms for the classes of
intersections of halfspaces, decision trees and small-depth formulas (see lines 3-6 in Table 3.1).
We also note that this technique yields TDS learning algorithms not only in the realizable setting,
but also in the agnostic setting.

Beyond Moment Matching. It is a natural question whether it is possible to beat the moment-
matching approach. We answer this question in the affirmative by showing that for the class of
halfspaces this is indeed possible. It is a standard fact that one needs polynomials of degree Ω̃(1/ϵ2)
to ϵ-approximate halfspaces up to L1 error better than ϵ under the standard Gaussian distribution.
Therefore the moment-matching approach requires a run-time of at least dΩ̃(1/ϵ2) to TDS learn
halfspaces under the standard Gaussian. We overcome this obstacle and give a TDS learning
algorithm for halfspaces that runs in time dO(log(1

ϵ)) (Line 2, Table 3.1).

1At a high level, we can only “transfer” a classifier’s loss from D to D′ via polynomials, and the absolute loss
cannot be computed as a low-degree polynomial.

100

One ingredient we use to design our algorithm is what we call TDS learning via the disagree-
ment region method. Suppose we are able to recover the parameters of a halfspace f ∗ up to some
accuracy β. Then, for some points x in Rd we will know f ∗(x) with certainty, but for some others
we will not. We say that the latter points form the disagreement region, and it gets smaller as β
decreases. The idea is to (i) use the training data to recover the parameters of halfspace f ∗ up to
such high accuracy β that the probability that a Gaussian sample falls into the disagreement region
is very small (ii) make sure that the recovered halfspace f̂ generalizes on the testing dataset by
checking that only a small fraction of the testing dataset falls into the disagreement region. We
note that this notion of disagreement region is also widely used in active learning (see discussion
in Section 3.3.1).

Although the disagreement region method gives an efficient algorithm for homogeneous (i.e.
origin-centered) halfspaces (Proposition 34), it fails for general halfspaces. Indeed, in Section 3.3.2
we show that for general halfspaces under the standard Gaussian distribution the disagreement
region method requires 2Ω(d) samples. We design a dO(log(1/ϵ))-time TDS learning algorithm for
general halfspaces under the Gaussian distribution by combining the moment matching approach
with the disagreement region approach:

• Suppose the halfspace f ∗ is not too biased, i.e. among dO(log(1/ϵ)) training samples we see
labels with values of both +1 and −1. We show that the parameters of such a halfspace can
be recovered up to a very high accuracy using only dO(log(1/ϵ)) additional training samples.
This allows us to leverage the disagreement region method to achieve TDS learning.

• Otherwise, the halfspace f ∗ is highly biased and it almost always takes the same label L
on a Gaussian input. For such halfspaces there is no hope to recover their parameters with
dO(log(1/ϵ) samples. Yet, we show that using the moment-matching approach with degree
parameter k of onlyO(log(1/ϵ)) allows us to certify that even under the test distributionDtest

X
the halfspace f ∗ will be biased and very likely to take the label L. Therefore, a predictor f̂
that assigns the label L to all points in Rd will generalize.

Techniques from Testable Learning. Additionally, in the setting of agnostic TDS learning
we give an algorithm for the class of homogeneous (i.e. origin-centered) halfspaces under any
isotropic log-concave distribution (see line 1 in Table 3.1). We achieve this using techniques from
testable learning developed in [GKK23] and Chapter 2. The first phase of our TDS learning algo-
rithm uses an approximate agnostic learning algorithm for halfspaces [ABL14, DKTZ20b] in order
to obtain a vector v̂, such that the homogeneous halfspace defined by v̂ has error O(λ) + ϵ in the
training dataset. Since the training distribution D is isotropic and log-concave, this means that the
angle between v̂ and the vector v, defining the halfspace with optimal combined error on the train-
ing and testing datasets, is also at mostO(λ)+ϵ. Finally, we apply one of the core procedures from
[GKK23] and Chapter 2 in order to ensure that every halfspace defined by a vector v′ that forms an
angle of at most O(λ)+ ϵ with v̂ agrees on at least 1−O(λ)− ϵ fraction of the testing dataset with
the halfspace defined by the vector v̂. This allows us to certify that the halfspace defined by the
vector v̂ will indeed generalize to the testing distribution. Note that we can use tools from testable
learning to remove the assumption on the training marginal; the algorithm would instead run a test

101

that accepts when both Dtrain
X and Dtest

X equal the target D without any assumptions on Dtrain
XY and

Dtest
XY (see also Remark 3). For clarity of exposition, we postpone formal statements composing the

two models to future work.

3.1.3 Related Work

Domain Adaptation. The field of domain adaptation has received significant attention over the
past two decades (see [BDBCP06, BCK+07, MMR09, BDBC+10, DLLP10, RMH+20] and ref-
erences therein). Similar to our learning setting, domain adaptation considers scenarios where the
learner has access to labeled training and unlabeled test examples and is asked to output a hypoth-
esis with low test error without, however, being allowed to reject. [BDBCP06, BCK+07, MMR09]
bound the test error of an empirical risk minimizer of training data by a sum of the parameter λ
and some notion of distance between the training and test marginals (discrepancy or dA distances)
which is statistically efficient to compute using unlabeled test and training examples. This im-
plies a statistically efficient TDS learning algorithm with error 2λ + ϵ (Section 3.11). All known
algorithms for computing discrepancy distance or dA distance, however, require exponential time
even for basic classes such as halfspaces and decision trees. By allowing the learning algorithm to
reject, we design computationally efficient TDS learning algorithms with error O(λ) + ϵ without
explicitly computing the discrepancy distance.

PQ Learning. Among the learning models that capture settings with distribution shift, PQ learn-
ing (see [GKKM20] and [KK21]) is most relevant to TDS learning. In PQ learning, the learner
has access to labeled training data and unlabeled test data and must output a classifier h and a set
X. The classifier needs to minimize the following two criteria simultaneously: (1) the test error
of the hypothesis h on test data points that fall into the region X (in other words, X is the region
where one is confident in the predictions of the hypothesis h for test data) and (2) the probabil-
ity that a training example falls outside X. [GKKM20] show that any concept class that can be
agnostically learned in the distribution-free setting can be PQ learned. [KK21] improve this reduc-
tion by showing that PQ learning is equivalent to distribution-free reliable agnostic learning (see
[KKM12]). The complexity of reliable learning is known to be “in between” agnostic learning and
PAC learning. In particular, reliably learning conjunctions implies PAC learning DNF formulas.
In Section 3.12, we show that PQ learning actually implies TDS learning.

Testable Learning. Although conceptually our definition of TDS learning is inspired by the re-
cent line of work in testable learning developed in Chapter 1, Chapter 2 and [GKK23, DKK+23],
the two frameworks address very different issues. Testable learning does not address distribution
shift, as it assumes that the training and testing distributions are the same distribution Dtrain

XY . What
the framework of testable learning does (indirectly) test is whether Dtrain

X satisfies a certain as-
sumption (e.g. Gaussianity) in order to make sure the learning algorithm gives a hypothesis f̂ that
satisfies the agnostic learning guarantee.

As noted in Chapter 1, in the realizable setting one can trivially satisfy the definition of testable

102

learning by drawing a fresh set of samples and using them to validate the hypothesis f̂ . Due
to this, existing work on testable learning Chapter 1, Chapter 2 and [GKK23, DKK+23], focus
on the agnostic setting, where such validation procedure cannot be applied (see Chapter 1 for
further detail). In contrast to this, even in the realizable setting, no such validation procedure
exists for TDS learning, as indicated by our separations between PAC learning and TDS learning
for monotone functions and convex sets (see Section 3.1.1). In fact, for monotone functions and
convex sets, realizable TDS learning is harder than agnostic learning as well. Furthermore, there
are cases where realizable TDS learning is easier than agnostic learning (and, therefore, easier than
testable agnostic learning). Here are two examples:

1. Due to statistical query lower bounds and cryptographic hardness results [GGK20, DKZ20,
DKPZ21, DKR23], the run-time required to agnostically learn a halfspace under the standard
Gaussian distribution is believed to be dΩ(1/ϵ2). In contrast to this, in this chapter we show
that realizable TDS learning of halfspaces with respect to the Gaussian distribution can be
achieved using only dO(log 1/ϵ)) run-time.

2. The agnostic learning of parity functions, even under the uniform distribution on {±1}d, is
believed to require 2Ω(d

poly log d
) time. In strong contrast with this, the class of parity functions

can be TDS-learned in the realizable setting using only poly(d/ϵ) time under any distribution
over {±1}d. This follows from the PQ-learning algorithm of [KK21], together with the
connection between PQ learning and TDS learning (Section 3.12).

Overall, we conclude that realizable TDS learning is incomparable to regular agnostic learning.
In particular, there are examples where realizable TDS learning is easier than testable agnostic
learning. Moreover, realizable TDS learning is harder than PAC learning, where distributional
assumptions can be verified through validation.

3.2 TDS Learning of Homogeneous Halfspaces

We provide an efficient TDS learner for the class of homogeneous halfspaces over Rd with
respect to any given isotropic log-concave distribution that achieves error O(λ) + ϵ, by applying
results from prior work in the literature of testable learning (see Chapter 2) and agnostic learning
(see [Dan15, ABL14, DKTZ20b]). We provide the following theorem and a proof sketch. The full
proof can be found in Section 3.7.

Theorem 13 (Agnostic TDS learning of Halfspaces). Let C be the class of origin-centered half-
spaces over Rd and C > 0 a sufficiently large universal constant. Let A, T be as defined in
Propositions 32 and 33. Let mA be the sample complexity of A(ϵ/C, δ/4) and mT = Cd4

ϵ2δ
. Then,

there is an algorithm (Algorithm 1) that, given inputs Strain, Xtest of sizes |Strain| ≥ mA and
|Xtest| ≥ mT is a TDS learning algorithm for C w.r.t. any isotropic log-concave distribution D
with error O(λ) + ϵ and run-time poly(d, 1

ϵ
) log

(
1
δ

)
, where is the accuracy parameter and δ is the

failure probability.

103

Leveraging training data. We first use an efficient agnostic learner on training data to recover a
halfspace f̂ : x→ sign(v̂·x) with low training error. For example, we may use a (polynomial time)
algorithm by [DKTZ20b] (Proposition 33) that outputs f̂ with err(f̂ ;Dtrain

XY) ≤ O(η)+ ϵ whenever
the training marginal is isotropic log-concave (η is the optimal training error). There are other
similar results in the literature of agnostic learning (e.g., see [ABL14]), but we use [DKTZ20b] as
it is more convenient for our setting.

Approximate parameter recovery. Let v∗ be the parameter vector corresponding to the halfs-
pace f ∗ that minimizes the common train and test error, i.e., err(f ∗;Dtrain

XY) + err(f ∗;Dtest
XY) = λ.

Then, we have PDtrain
X

[sign(v̂·x) ̸= sign(v∗ ·x)] ≤ err(f̂ ;Dtrain
XY)+err(f ∗;Dtrain

XY) ≤ O(η)+ϵ+λ =

O(λ) + ϵ. Since Dtrain
X = D is isotropic log-concave, it is known that the disagreement over

Dtrain
X between two halfspaces is proportional to the angular distance between their parameters,

i.e., ∡(v̂,v∗) = O(PDtrain
X

[sign(v̂ · x) ̸= sign(v∗ · x)]), which we have bounded by O(λ+ ϵ).

Testing phase. We have shown that v̂ is geometrically close to v∗, which achieves test error
at most λ, by definition. It remains to certify that the test marginal behaves like an isotropic
log-concave distribution with respect to v̂, i.e., for a large enough set of i.i.d. examples Xtest

from Dtest
X and for any v′ ∈ Sd−1 we have that 1

|Xtest|
∑

x∈Xtest
1{sign(v̂ · x) ̸= sign(v′ · x)} :=

PXtest [sign(v̂ · x) ̸= sign(v′ · x)] = O(∡(v̂,v′)), because then we will be able to bound the
empirical test error of f̂ by λ+O(∡(v̂,v∗)), which is O(λ+ ϵ). The result then would follow by
standard VC dimension arguments.

It turns out that Chapter 2 on testable learning has provided an efficient tester that achieves
exactly what we need. Note that the proof of the following proposition (Lemma 6 in Chapter 2) is
nontrivial, requiring estimation of low-order moments and careful conditioning. We can apply this
to our setting, because it only requires access to the marginal distribution.

Proposition 32 (Tester of Local Halfspace Disagreement, Consequence of Lemma 6 in Chapter 2).
Let D be a distribution over Rd, v1 ∈ Sd−1, θ ∈ (0, π/4], δ ∈ (0, 1) and C > 0 a sufficiently large
universal constant. Then, there is an algorithm T (θ, δ) that, upon drawing at least Cd4

θ2δ
examples

X from D and in time poly(d, 1
θ
, 1
δ
) either accepts or rejects and satisfies the following.

(a) If T accepts, then for any v2 ∈ Rd with ∡(v1,v2) ≤ θ, it holds

P
x∼X

[sign(v1 · x) ̸= sign(v2 · x)] ≤ C∡(v1,v2)

(b) If D is isotropic log-concave, then T accepts with probability at least 1− δ.

104

3.3 TDS Learners for General Halfspaces

3.3.1 Warm-Up: Disagreement-Based TDS Learning

We provide a general TDS learner for the realizable setting, based on the notion of disagreement
regions from active learning. Not only is this approach interesting in and of itself, but it will also
be useful in Section 3.3.2 where we present our main result for TDS learning of general halfspaces
in the realizable setting. The main idea is to testably bound the probability that a test example
falls in some region D, whose mass with respect to the target distribution becomes smaller as the
number of training samples increases and, also, the output of the training algorithm achieves low
error on any distribution that assigns small mass to D. It turns out that the quantity Px∼D[x ∈ D],
where D is some given distribution over a space X ⊆ Rd, is a well-studied notion in the literature
of active learning (see [CAL94, Han09, BBL06, Han11, Han14, BHV10, Han07] and references
therein). We now provide a formal definition for the disagreement region.

Definition 10 (Disagreement Region). Let X ⊆ Rd, D a distribution over X and C a concept class
of functions that map X to {±1}. For ϵ > 0 and f ∈ C, we define the ϵ-disagreement region of f
under D, Dϵ(f ;D) as the subset of X such that if x ∈ Dϵ(f ;D), then there are f1, f2 ∈ C with
err(f1, f ;D) ≤ ϵ, and err(f2, f ;D) ≤ ϵ and f1(x) ̸= f2(x).

In the literature of active learning, the quantity of interest is called the disagreement coefficient
and is defined for a concept class C and a distribution D as follows (see, e.g., [Han14]).

θ(ϵ) = sup
f∈C

sup
ϵ′>ϵ

Px∼D[x ∈ Dϵ′(f ;D)]

ϵ′
(3.1)

In particular, for active learning, is is crucial that θ(ϵ) is asymptotically bounded by a slowly in-
creasing function of 1/ϵ (e.g., O(log(1/ϵ))), since bounds on the disagreement coefficient directly
provide rates on the label complexity of disagreement-based active learning, up to logarithmic fac-
tors [Han11]. In our setting, meaningful results are obtained even when θ(ϵ) = O(1/ϵ1−c) for any
constant c ∈ (0, 1). Moreover, we also focus on the dependence of the disagreement coefficient on
other relevant parameters, like the dimension d. To emphasize this, in what follows, we will use
the notation θ(ϵ, d) to refer to the disagreement coefficient. We obtain the following result, which
implies, for example, a polynomial improvement in the sample complexity bound of realizable
TDS learning of homogeneous halfspaces w.r.t. the Gaussian compared to the TDS learner we
proposed in Theorem 13 for the agnostic setting (see also Section 3.8.1).

Theorem 14 (Disagreement-Based TDS learning). Let C be the class of concepts that mapX ⊆ Rd

to {±1} with VC dimension VC(C), let D a distribution over X and C > 0 a sufficiently large
universal constant. Suppose that we have access to an ERM oracle for PAC learning C under D
and membership access to Dϵ′(f ;D) for any given f ∈ C and ϵ′ > 0. Then, there is an algorithm
(Algorithm 3) that given inputs of sizes |Strain| ≥ C VC(C)

ϵ′
log
(

1
ϵ′δ

)
and |Xtest| ≥ C VC(C)

ϵ2
log
(

1
ϵδ

)
is

a TDS learning algorithm for C w.r.t. D that calls the ϵ′-ERM oracle once and the ϵ′-membership
oracle |Strain| times, where ϵ is the accuracy parameter, δ is the failure probability and ϵ′ such that
ϵ′ · θ(ϵ′, d) ≤ ϵ/2.

105

3.3.2 Beyond Disagreement: TDS Learners for General Halfspaces

We give a TDS-learning algorithm for the class of halfspaces under the standard Gaussian
distribution. The algorithm runs in quasi-polynomial time in all relevant parameters and, contrary
to the case of homogeneous halfspaces, works in a setting where efficient parameter recovery is not
possible. This happens because when a general halfspace has arbitrarily large bias, it is possible,
for example, that all of the training examples have the same label.

In particular, applying a pure disagreement-based TDS learning framework (Theorem 14) in
the case of general halfspaces can only give exponential-time algorithms for this problem. To
illustrate this, imagine that the ground truth is a general halfspace with bias τ =

√
d but unknown

direction v ∈ Sd−1. Then, any general halfspace x 7→ sign(v′ · x − τ) with the same bias is
exp(−Ω(d))-close to the ground truth with respect to the Gaussian distribution, due to standard
Gaussian concentration, i.e., Px∼N (0,Id)[sign(v · x − τ) ̸= sign(v′ · x − τ)] ≤ Px∼N (0,Id)[sign(v ·
x−τ) ̸= sign(−v·x−τ)], which is upper bounded by Px∼N (0,Id)[|v·x| >

√
d] ≤ 2 exp(−d/2). Let

ϵ′ = 2 exp(−d/2). Suppose that ERM returns a halfspace f̂ that is ϵ′-close to the ground truth but
has bias τ . Any x ∈ Rd with ∥x∥2 ≥

√
d, falls within the disagreement region Dϵ′(f̂ ;N (0, Id))

and therefore Px∼N (0,Id)[x ∈ Dϵ′(f̂ ;N (0, Id))] is constant. This implies that running the ERM
oracle on training data even up to exponentially small accuracy ϵ′ = exp(−Ω(d)) does not meet
the requirement of Theorem 14 (see also [EYW12]) that the disagreement coefficient is bounded
as ϵ′ · θ(ϵ′, d) ≤ ϵ/2.

In order to overcome this obstacle, we perform a case analysis that depends on the bias of the
unknown halfspace. If the bias is bounded, then we may use a disagreement-based approach, since
we can approximately recover the true parameters of the unknown halfspace using training data
and it suffices to verify that the test distribution does not amplify the error between any pair of
halfspaces close to the obtained approximations of the true parameters. Now, consider the case
when the bias is large. We may assume without loss of generality the constant hypothesis +1 has
low training error (since the ground truth has large bias and the marginal is Gaussian). If we can
certify that the test marginal is sufficiently concentrated in every direction, then this hypothesis
must also have small test error. To certify concentration for the test distribution’s marginals, we
use a moment-matching approach. Checking the moment matching condition only up to degree
O(log(ϵ)) turns out to be sufficient to certify the type of concentration we need. We thus obtain a
quasi-polynomial TDS learning algorithm for general halfspaces with respect to the Gaussian dis-
tribution. Since the probability of success can be amplified through repetition (see Proposition 44),
we provide a result with constant failure probability. For the full proof, see Section 3.8.2.

Theorem 15 (TDS learning of General Halfspaces). Let C be the class of general halfspaces over
Rd and C > 0 a sufficiently large universal constant. Then, there is an algorithm (Algorithm 4)
that, given inputs of size |Strain| = |Xtest| = CdC log 1/ϵ is a TDS learning algorithm for C w.r.t.
N (0, Id) with run-time dO(log 1/ϵ), where ϵ is the accuracy parameter, and the failure probability δ
is at most 0.01.

Compared to Theorem 14, our approach here incurs an increase in the amount of test samples
required (from poly(d, 1/ϵ) to dO(log(1/ϵ)), used for moment matching) but significantly decreases

106

the amount of training samples required (from exp(Ω(d)) to dO(log(1/ϵ))).

3.4 TDS Learning through Moment Matching

In the previous section, we provided a TDS learner for general halfspaces in the realizable
setting that requires ideas beyond parameter recovery and testably bounding the probability of
falling in the disagreement region. Crucially, Theorem 15 uses a moment-matching approach
in the case when the bias of the unknown halfspaces is large. As is explained in this section, we
show that the moment-matching approach can actually provide a generic result which demonstrates
that L2-sandwiching (see Definition 11) implies TDS learning, even in the non-realizable setting.
We also instantiate our framework to several important concept classes (halfspace intersections,
decision trees and Boolean formulas) with respect to the Gaussian and uniform distributions, by
applying constructions from pseudorandomness literature to bound the L2-sandwiching degree of
each of these classes and acquire entries 3-6 in Table 3.1.

We provide a general theorem, which demonstrates that L2-sandwiching implies TDS learning
under some additional natural assumptions about the target marginal distribution, which are satis-
fied by the standard Gaussian distribution over Rd and the uniform distribution on {±1}d. While it
is known thatL1-sandwiching implies testable learning (see [GKK23]), we require the stronger no-
tion of L2-sandwiching. In particular, while L1-sandwiching would (testably) imply the existence
of low degree polynomials with low test error, we do not get to see labeled examples from Dtest

XY .
Moreover, we cannot a priori assume that the output of the training algorithm is a sandwiching
polynomial, even if we know one exists.

In our analysis, we crucially use the fact that the square of the difference between two polyno-
mials is itself a polynomial whose coefficients and degree are bounded by the degree and coefficient
bounds of the original polynomials. Crucially, this enables us to use the following transfer lemma
which relates the squared distance between polynomials under the test distribution to their squared
distance under the training distribution. In what follows, we use the notation xα =

∏
i∈[d] x

αi
i ,

where α ∈ Nd.

Lemma 13 (Informal, Transfer Lemma for Square Loss, see Lemma 16). Let D be a distribution
over X ⊆ Rd and Xtest a (multi)set of points in Rd. If Ex∼Xtest [x

α] ≈ Ex∼D[x
α] for all α ∈ Nd

with ∥α∥1 ≤ 2k, then for any degree k polynomials p1, p2 with bounded coefficients, it holds

1

|Xtest|
∑

x∈Xtest

(p1(x)− p2(x))2 ≈ Ex∼D[(p1(x)− p2(x))2]

Moreover, we use the fact that, due to the L2-sandwiching assumption, we can bound quantities
of the form E[(p(x)− f(x))2] for f ∈ C from above by O(E[(p(x)− pdown(x))

2] +E[(pdown(x)−
pup(x))

2]), irrespective of the distribution that the expectations are taken over. Over the training
distribution, the quantity ED[(pdown(x) − pup(x))2] is small via the definition of L2-sandwiching
degree, and the quantity ED[(p(x)−f(x))2] because p is obtained from L2 polynomial regression.
If p, pdown, pup are all low degree and the dataset Xtest matches low-degree moments with D, then

107

we may apply Lemma 13 to bound 1
|Xtest|

∑
x∈Xtest

[(p(x) − f(x))2]. Once it is shown that p fits
f well on the testing dataset Xtest, standard generalization bounds allows us to conclude that it
will also predict f well on the testing distribution. Therefore, by running polynomial regression
on training data to obtain p and testing whether the empirical test moments match the moments of
the training distribution, we acquire the following result, whose proof can be found in Section 3.9.

Theorem 16 (L2-sandwiching implies TDS Learning). Let D be a distribution over a set X ⊆ Rd

and let C ⊆ {X → {±1}} be a concept class. Let ϵ, δ ∈ (0, 1), ϵ′ = ϵ/100 δ′ = δ/2 and assume
that the following are true.

(i) (L2-Sandwiching) The ϵ′-approximate L2 sandwiching degree of C underD is at most k with
coefficient bound B.

(ii) (Moment Concentration) If X ∼ D⊗m and m ≥ mconc then, with probability at least 1− δ′,
we have that for any α ∈ Nd with ∥α∥1 ≤ k it holds |ED[x

α]− 1
|X|
∑

x∈X xα| ≤ ϵ′

B2d4k
.

(iii) (Generalization) If S ∼ D⊗m
XY where DXY is any distribution over X × {±1} such that

DX = D and m ≥ mgen then, with probability at least 1 − δ′, for any degree-k polynomial
p with coefficient bound B it holds |EDXY [(y − p(x))2]− 1

|S|
∑

(x,y)∈S[(y − p(x))2]| ≤ ϵ′.

Then, there is an algorithm (Algorithm 5) that, upon receiving mtrain ≥ mgen labelled samples
Strain from the training distribution and mtest ≥ C · d

k+log(1/δ)
ϵ2

+mconc unlabelled samples Xtest

from the test distribution (where C > 0 is a sufficiently large universal constant), runs in time
poly(|Strain|, |Xtest|, dk) and TDS learns C with respect to D up to error 32λ + ϵ and with failure
probability δ.

3.5 Lower Bounds for Monotone Functions and Convex Sets in
Realizable Setting

We provide three lower bounds for TDS learning. The first one shows that TDS learning
the class of monotone functions over {±1}d with respect to the uniform distribution requires an
exponential number of examples from either the training or the test distribution, which implies a
separation with regular agnostic learning. The second lower bound shows that TDS learning the
class of indicators of convex sets also requires an exponential in the dimension number of samples.
The third lower bound demonstrates that a linear dependence on the error term λ (as defined in
Equation (3.2)) is necessary for TDS learning in the non-realizable setting and can be found in
Section 3.10.3.

Recent work on testable learning (which is a generalization of the classical agnostic learning
framework, see Chapter 1 and [GKK23]) has demonstrated that the class of monotone functions
over {±1}d cannot be testably learned with respect to the uniform distribution unless the learner
draws at least 2Ω(d) training samples. Since the class of monotone functions can be agnostically
learned in time 2Õ(

√
d) with respect to the uniform distribution over the hypercube {±1}d, this

108

implies that testable (agnostic) learning is strictly harder than regular agnostic learning. We show
that the lower bound of 2Ω(d) extends to the problem of TDS learning monotone functions even in
the realizable setting. Recall that we have shown that we can TDS learn halfspaces with respect to
the standard Gaussian distribution in the realizable setting in time dO(log(1/ϵ)) (Theorem 15) but it
is known that, for agnostic learning, any SQ algrorithm for the problem requires time dΩ(1/ϵ2) (see
[GGK20, DKZ20, DKPZ21]). Therefore, we conclude that realizable TDS learning and agnostic
learning are incomparable. We now provide our lower bound. For the proof, see Section 3.10.

Theorem 17 (Hardness of TDS Learning Monotone Functions). Let the accuracy parameter ϵ be
at most 0.1 and the success probability parameter δ also be at most 0.1. Then, in the realizable
setting, any TDS learning algorithm for the class of monotone functions over {±1}d with accuracy
parameter requires either 20.04d training samples or 20.04d testing samples for all sufficiently large
values of d.

We now provide a lower bound for convex sets (see also Section 3.10). Since the class of
indicators of convex sets can be agnostically learned in time 2Õ(

√
d) with respect to the Standard

Gaussian on Rd, the following theorem implies yet another separation between agnostic learning
and realizable TDS learning in the distribution specific setting under the Gaussian distribution for
a well-studied concept class.

Theorem 18 (Hardness of TDS Learning Convex Sets). Let the accuracy parameter ϵ be at most
0.1 and the success probability parameter δ also be at most 0.1. Then, in the realizable setting,
any TDS learning algorithm for the class of indicators of convex sets under the standard Gaussian
distribution on Rd requires either 20.04d training samples or 20.04d testing samples for all sufficiently
large values of d.

Remark 1. In Proposition 43 of the Appendix, we show that TDS learning is not harder than PQ
learning (which is a related learning primitive, see [GKKM20, KK21]). [KK21] show that the
class of parities over {±1}d can be efficiently PQ learned, which provides another example where
TDS learning is easier than agnostic learning.

3.6 Notation and Basic Definitions

We let X ⊆ Rd and, in particular, X will either be the d-dimensional hypercube {±1}d or the
d-dimensional Euclidean space Rd. For a distribution D over X , we use ED (or Ex∼D) to refer to
the expectation over distribution D and for a given (multi)set X , we use EX (or Ex∼X) to refer to
the expectation over the uniform distribution on X (i.e., Ex∼X [g(x)] =

1
|X|
∑

x∈X g(x), counting
possible duplicates separately). We let R+ = (0,∞).

For a function p : X → R and r ∈ N, we define the Lr norm of p under D as ∥p∥Lr(D) =

Ex∼D[p(x)
r]

1
r . For x ∈ X where x = (x1,x2, . . . ,xd) and for α ∈ Nd, we denote with xα the

product
∏

i∈[d] x
αi
i , Mα = E[xα] and ∥α∥1 =

∑
i∈[d] αi. For a polynomial p over Rd and α ∈ Nd,

we denote with pα the coefficient of p corresponding to xα, i.e., we have p(x) =
∑

α∈Nd pαx
α. If p

109

is a polynomial over {±1}d, then we can always express it in a unique multilinear form, so we will
only use coefficients pα with α ∈ {0, 1}d, i.e., p(x) =

∑
α∈{0,1}d pαx

α. We define the degree of
p and denote deg(p) the maximum degree of a monomial whose coefficient in p is non-zero, i.e.,
deg(p) = max{∥α∥1 : pα ̸= 0}.

We denote with Sd−1 the d−1 dimensional sphere on Rd. For any v1,v2 ∈ Rd, we denote with
v1 · v2 the inner product between v1 and v2 and we let ∡(v1,v2) be the angle between the two
vectors, i.e., the quantity θ ∈ [0, π] such that ∥v1∥2∥v2∥2 cos(θ) = v1 · v2. For v ∈ Rd, τ ∈ R, we
call a function of the form x 7→ sign(v · x) an origin-centered (or homogeneous) halfspace and a
function of the form x 7→ sign(v · x− τ) a general halfspace over Rd.

L2-sandwiching degree. We now define the notion of L2-sandwiching polynomials for a func-
tion f with respect to a distributionD, i.e., a pair of polynomials such that one of them is pointwise
above f , the other one is pointwise below f and the L2 distance between the two polynomials with
respect to D is small. While the notion of L1 sandwiching polynomials is standard in the literature
of pseudorandomness (see, e.g., [Baz09]) and has applications to testable learning (see Chapter
2), in order to obtain our main results, we make use of the stronger notion of L2-sandwiching
polynomials which we define below.

Definition 11 (L2-sandwiching polynomials). Consider a product set X and a distribution D over
X . For ϵ > 0 and f : X → {±1}, we say that the polynomials pup, pdown : X → R are
ϵ-approximate L2-sandwiching polynomials for f under D if the following are true.

1. pdown(x) ≤ f(x) ≤ pup(x), for all x ∈ X .

2. ∥pup − pdown∥2L2(D) ≤ ϵ

Moreover, for ϵ > 0, a concept class C ⊆ {X → {±1}} and k,B > 0, we say that the ϵ-
approximate L2-sandwiching degree of C under D is at most k and with coefficient bound B if
for any f ∈ C there are ϵ-approximate L2-sandwiching polynomials pup, pdown for f such that
deg(pup), deg(pdown) ≤ k and each of the coefficients of pup, pdown are absolutely bounded by B.

Learning Setup. ConsiderDtrain
XY ,Dtest

XY to be distributions over X ×{±1} and letDtrain
X ,Dtest

X be
the corresponding marginal distributions onX ⊆ Rd. Our tester-learners receive labelled examples
from Dtrain

XY and unlabelled examples from Dtest
X and their goal is to produce a hypothesis with low

error on Dtest
XY or potentially reject but only if distribution shift is detected. Given a hypothesis

class C ⊆ {X → {±1}}, h1, h2 : X → {±1} and distributionsDXY ,Dtrain
XY ,Dtest

XY over X ×{±1},
we define err(h1;DXY) = P(x,y)∼DXY [y ̸= h1(x)] and err(h1, h2;DX) = Px∼DX [h1(x) ̸= h2(x)]
as well as the following quantity, which is standard in the domain adaptation literature (see, e.g.,
[BDBCP06, BCK+07, BDBC+10, DLLP10]).

λ(C;Dtrain
XY ,Dtest

XY) := min
f∈C
{err(f ;Dtrain

XY) + err(f ;Dtest
XY)}, attained by f ∗ ∈ C (3.2)

110

Observe that parameter λ becomes small whenever the training and test errors can be simulta-
neously minimized by a common classifier in C. Clearly, if there is no relationship between the
training and test distributions, then using data from the training distribution does not reveal any
information about the test distribution and, therefore, learning is hopeless (see also Theorem 25).
We will assume (as is common in the domain adaptation literature) that the parameter λ is a valid
choice for quantifying the relationship between the training and test distributions, in the sense that
considering λ to be small is not unrealistic. In particular, we will partly focus on the following
setting where λ is zero. To distinguish between the two settings, we say that we are in the agnostic
setting when λ ≥ 0 (arbitrary) and in the realizable setting when λ = 0. When λ = 0, there
exists a classifier in C that achieves both zero training loss and test loss and we therefore refer to
this setting as realizable. Another (slightly more specific) way to view the realizable setting is by
considering the labelled distribution Dtrain

XY (resp. Dtest
XY) formed as follows: for some f ∗ ∈ C, draw

an example x from Dtrain
X (resp. Dtest

X) and form the pair (x, y) ∼ Dtrain
XY (resp. (x, y) ∼ Dtest

XY) by
setting y = f ∗(x). We now provide a formal definition of our learning model.

Definition 12 (Testable Learning with Distribution Shift (TDS Learning)). Let X ⊆ Rd and con-
sider a distribution D over X and a concept class C ⊆ {X → {±1}}. For some ψ : [0, 1]→ [0, 1]
and ϵ, δ ∈ (0, 1), we say that an algorithm A testably learns C with distribution shift w.r.t. D
up to error ψ(λ) + ϵ and probability of failure δ if the following is true. For any distributions
Dtrain

XY ,Dtest
XY over X ×{±1} such thatDtrain

X = D, algorithmA, upon receiving a large enough set
of labelled samples Strain from the training distributionDtrain

XY and a large enough set of unlabelled
samples Xtest from the test distribution Dtest

X , either rejects (Strain, Xtest) or accepts and outputs a
hypothesis h : X → {±1} with the following guarantees.

(a) (Soundness.) With probability at least 1− δ over the samples Strain, Xtest we have:

If A accepts, then the output h satisfies err(h;Dtest
XY) ≤ ψ(λ) + ϵ.

(b) (Completeness.) Whenever Dtest
X = Dtrain

X , A accepts with probability at least 1− δ over the
samples Strain, Xtest.

In particular, we say that A testably learns C with distribution shift w.r.t. D in the realizable
setting, ifA is required to satisfy the above guarantees only whenDtrain

XY ,Dtest
XY and C are realizable

(where λ = 0 = ψ(λ)).

3.7 TDS Learning of Homogeneous Halfspaces

We now provide a proof of Theorem 13, which we restate here for convenience.

Theorem 19 (Agnostic TDS learning of Halfspaces). Let C be the class of origin-centered half-
spaces over Rd and C > 0 a sufficiently large universal constant. Let A, T be as defined in
Propositions 32 and 33. Let mA be the sample complexity of A(ϵ/C, δ/4) and mT = Cd4

ϵ2δ
. Then,

Algorithm 1, given inputs Strain, Xtest of sizes |Strain| ≥ mA and |Xtest| ≥ mT is a TDS learning
algorithm for C w.r.t. any isotropic log-concave distribution D with error O(λ) + ϵ and run-time
poly(d, 1

ϵ
) log

(
1
δ

)
, where ϵ is the accuracy parameter and δ is the failure probability.

111

Algorithm 1: Agnostic TDS Learning of Halfspaces
Input: Sets Strain from Dtrain

XY , Xtest from Dtest
X , parameters ϵ > 0, δ ∈ (0, 1)

Set ϵ′ = ϵ/C where C is some sufficiently large universal constant.
Let mA be the sample complexity of A(ϵ′, δ/4).
Split Strain to S1, S2 with sizes mA,

C
ϵ2
log(1/δ)

Run A(ϵ′, δ/4) on S1 and obtain v̂ ∈ Sd−1

Let ϵ̂ = P(x,y)∼S2 [sign(v̂ · x) ̸= y].
Run T (ϵ̂, δ/2) on Xtest.
Reject and terminate if T rejects.
Otherwise, output f̂ : Rd → {±1} with f̂ : x→ sign(v̂ · x).

In order to prove the above theorem, we make use of the following agnostic learning result
from [DKTZ20b].

Proposition 33 (Theorem 3.1 in [DKTZ20b]). Let DXY be a distribution over Rd × {±1} such
that its marginal on Rd is isotropic log-concave. Then there is an algorithm A such that for any
ϵ > 0 and δ ∈ (0, 1),A(ϵ, δ), upon drawing m = Õ(d

ϵ4
log(1/δ)) independent examples from DXY

and in time poly(d, 1/ϵ) · log(1/δ), outputs v̂ ∈ Sd−1 such that, with probability at least 1− δ, the
corresponding halfspace has error at most O(η) + ϵ, where η is the error of the optimal halfspace
on DXY .

We also use the following fact about isotropic log-concave distributions.

Fact 1. Px∼D[sign(v̂ · x) ̸= sign(v∗ · x)] = Θ(∡(v̂,v∗)), when D is isotropic log-concave.

Proof. Suppose that Strain is a set of mtrain independent samples from Dtrain
XY , where the marginal

of Dtrain
XY on Rd is the standard Gaussian distribution. Let also Xtest be a set of mtest independent

unlabelled samples from Dtest
X . In what follows, let ϵ′ = ϵ/C and let C > 0 be a sufficiently large

universal constant. Let also mA be the sample complexity of A(ϵ′, δ/4) and mT = Cd4

ϵ2δ
.

Soundness. Suppose that the algorithm accepts. Let v∗ ∈ Sd−1 define the halfspace f ∗ that
achieves err(f ∗;Dtest

XY) + err(f ∗;Dtrain
XY) = λ. Note that since |S2| ≥ C

ϵ2
log(1/δ), we have that

ϵ̂ ≤ err(f̂ ;Dtrain
XY)+ ϵ′. By Proposition 33, since |S1| ≥ mA we have err(f̂ ;Dtrain

XY) ≤ η+ ϵ′, where
η ∈ (0, 1) is the error of the optimum halfspace, say f : x 7→ sign(v · x) on Dtrain

XY . Note that
η ≤ λ. We have that err(f̂ , f ;Dtrain

X) ≤ err(f̂ ;Dtrain
XY)+err(f ;Dtrain

XY) ≤ 2η+ ϵ′. Therefore, due to
Fact 1, and since Dtrain

X = D, we obtain ∡(v̂,v) ≤ 2C ′η +C ′ϵ′ for some sufficiently large C ′ > 0
(with C ≫ C ′).

Moreover, we have that err(f ∗;Dtrain
XY) ≤ λ and, hence err(f ∗, f ;Dtrain

X) ≤ λ + C ′η. We now
apply Proposition 32, to obtain err(f̂ , f ∗;Xtest) ≤

√
C∡(v̂,v∗). Since |Xtest| ≥

√
C

ϵ2
log(1/δ), due

to standard VC dimension arguments, we have err(f̂ , f ∗;Dtest
X) ≤

√
C∡(v̂,v∗) + ϵ′. By Fact 1,

112

∡(v̂,v∗) ≤ C ′err(f̂ , f ∗;Dtrain
X). Therefore, with probability at least 1− δ, we have

err(f̂ ;Dtest
XY) ≤ err(f̂ , f ∗;Dtest

X) + err(f ∗;Dtest
XY) ≤ C ′

√
Cerr(f̂ , f ∗;Dtrain

X) + ϵ′ + λ

≤ C ′
√
Cerr(f̂ , f ;Dtrain

X) + C ′
√
Cerr(f, f ∗;Dtrain

X) + ϵ′ + λ

≤ Cλ+ Cϵ′ ≤ ϵ

Completeness. Readily follows from Proposition 32 and |Xtest| ≥ mT .

Remark 2. We note that, in fact, the original version of Proposition 32 in Chapter 2 does not
require the target marginal to be known, but works universally for any isotropic log-concave dis-
tribution (as well as distributions with heavier tails). This implies that the completeness criterion
that Algorithm 1 satisfies is actually much stronger: for an appropriate choice of the absolute
constant C, Algorithm 1 can be made to accept whenever Dtest

X is isotropic log-concave (and not
necessarily equal to the training marginal).

Remark 3. Moreover, we point out that we can apply results from Chapter 2 and substitute algo-
rithm A with a universal tester-learner for halfspaces. This enables us to remove the assumption
that Dtrain

X is some fixed isotropic log-concave distribution, and the final algorithm would accept
with high probability whenever Dtrain

X is isotropic strongly log-concave and Dtest
X is isotropic log-

concave. In that sense, TDS learning composes well with (universally) testable learning. For sake
of presentation, however, we leave formal compositional arguments to future work.

3.8 Realizable TDS Learning

3.8.1 Disagreement-Based TDS Learners

In this section, we prove Theorem 14. First, we prove the following a special version regarding
realizable TDS learning of homogeneous halfspaces with respect to the Gaussian distribution.

Proposition 34 (TDS learning of Homogeneous Halfspaces). Let C be the class of origin-centered
halfspaces over Rd and C > 0 a sufficiently large universal constant. Then, Algorithm 2, given in-
puts Strain, Xtest of sizes |Strain| ≥ C(d

ϵ
)3/2 log

(
1
ϵδ

)
and |Xtest| ≥ C d

ϵ2
log
(

1
ϵδ

)
is a TDS learning al-

gorithm for C w.r.t. the standard Gaussian distributionN (0, Id) with run-time poly(d, 1/ϵ) log
(
1
δ

)
,

where ϵ is the accuracy parameter and δ is the failure probability.

We will use the following fact about the Gaussian distribution.

Fact 2. For any v1,v2 ∈ Sd−1 we have Px∼N (0,Id)[sign(v1 · x) ̸= sign(v2 · x)] = ∡(v1,v2)/π.

Proof of Proposition 34. Suppose that Strain is a set of mtrain independent samples from Dtrain
XY ,

where the marginal of Dtrain
XY on Rd is the standard Gaussian distribution. Let also Xtest be a set of

mtest independent unlabelled samples from Dtest
X . In what follows, let ϵ′ = ϵ3/2/(8d1/2).

113

Algorithm 2: TDS Learning of Homogeneous Halfspaces
Input: Sets Strain from Dtrain

XY , Xtest from Dtest
X , parameter ϵ > 0

Set ϵ′ = ϵ3/2/(10d1/2).
Run the Empirical Risk Minimization algorithm on Strain up to error ϵ′, i.e., compute a
vector v̂ ∈ Sd−1 with v̂ = argminv′∈Sd−1 P(x,y)∈Strain

[y ̸= sign(v′ · x)]
Let V = {v′ ∈ Sd−1 : ∥v′ − v̂∥2 ≤ ϵ′}.
For each x ∈ Xtest, compute the following quantities.

v+
x = argmax

v′∈V
v′ · x and v−

x = argmin
v′∈V

v′ · x

Reject and terminate if Px∼Xtest [sign(v+
x · x) ̸= sign(v−

x · x)] > 3ϵ/4.
Otherwise, output f̂ : Rd → {±1} with f̂ : x 7→ sign(v̂ · x).

Soundness. When the algorithm accepts, we have that Px∼Xtest [sign(v+
x ·x) ̸= sign(v−

x ·x)] ≤ 3ϵ
2

.
By standard VC dimension arguments and Fact 2, after running the Empirical Risk Minimization
algorithm on training data, as long asmtrain ≥ C d

ϵ′
log(1/(δϵ′)), we have ∥v̂−v∥2 ≤ ϵ′. Therefore,

both v and v̂ are within V = {v′ ∈ Sd−1 : ∥v′ − v̂∥2 ≤ ϵ′}. By the definition of v+
x and v−

x , we
have the following.

P
x∼Xtest

[sign(v̂ · x) ̸= sign(v · x)] ≤ P
x∼Xtest

[sign(v+
x · x) ̸= sign(v−

x · x)] ≤ 3ϵ/4 (3.3)

Moreover, we have err(f̂ ;Dtest
XY) = E[Px∼Xtest [sign(v̂ · x) ̸= sign(v · x)]], where the expectation is

over Xtest ∼ (Dtest
X)⊗mtest . By standard VC dimension arguments, we have that, with probability

at least 1 − δ/2, err(f̂ ;Dtest
XY) = Px∼Xtest [sign(v̂ · x) ̸= sign(v · x)] + ϵ/4 whenever mtest ≥

C d
ϵ2
log(1/(δϵ)). Therefore, with probability at least 1 − δ (union bound over two bad events),

upon acceptance, we have err(f̂ ;Dtest
XY) ≤ ϵ.

Completeness. For completeness, we assume that Xtest is drawn from N (0, Id). Observe that
V does not depend on Xtest (since it is formed only using training data). Therefore, we may
apply a standard Hoeffding bound to ensure that with probability at least 1− δ, whenever mtest ≥
C 1

ϵ2
log(1/(δ)), we have

P
x∼Xtest

[sign(v+
x · x) ̸= sign(v−

x · x)] ≤ P
x∼N (0,Id)

[sign(v+
x · x) ̸= sign(v−

x · x)] + ϵ/4

It remains to bound Px∼N (0,Id)[sign(v+
x ·x) ̸= sign(v−

x ·x)] by ϵ/2. We observe that, since v+,v− ∈
V , we have v−

x ·x ≥ v+
x ·x−∥v+

x −v−
x ∥2∥x∥2 ≥ v+

x ·x− ϵ′∥x∥2 ≥ v̂ ·x− ϵ′∥x∥2 by the definition
of v+

x and v−
x . We similarly have v+

x · x ≤ v̂ · x+ ϵ′∥x∥2.
Therefore the probability that sign(v+

x · x) ̸= sign(v−
x · x) is upper bounded by the probability

114

that |v̂ · x| ≤ ϵ′∥x∥2 (since, otherwise, both v+
x · x and v−

x · x have the same sign). In particular

P
x∼N (0,Id)

[sign(v+
x · x) ̸= sign(v−

x · x)] ≤ P
x∼N (0,Id)

[|v̂ · x| ≤ ϵ′∥x∥2]

≤ P
x∼Nd

[∥x∥2 >
√

4d/ϵ] + P
x∼Nd

[|v̂ · x| ≤ ϵ′
√

4d/ϵ]

≤ Ex∼Nd
[∥x∥22]ϵ
4d

+ P
x∼Nd

[|v̂ · x| ≤ ϵ′
√

4d/ϵ]

We obtain the final inequality by applying Markov’s inequality. Since Ex∼Nd
[∥x∥22] = d and the

one-dimensional Gaussian density is upper bounded by (2π)−1, we have the following bound.

P
x∼N (0,Id)

[sign(v+
x · x) ̸= sign(v−

x · x)] ≤
ϵ

4
+

2√
2π
ϵ′
√
4d/ϵ ≤ ϵ/2 ,

since ϵ′ ≤ ϵ3/2/(8d1/2). This completes the proof.

We now prove Theorem 14, which we restate here for convenience.

Theorem 20 (Disagreement-Based TDS learning). Let C be the class of concepts that mapX ⊆ Rd

to {±1} with VC dimension VC(C), let D a distribution over X and C > 0 a sufficiently large
universal constant. Suppose that we have access to an ERM oracle for PAC learning C underD and
membership access to Dϵ′(f ;D) for any given f ∈ C and ϵ′ > 0. Then, Algorithm 3, given inputs
of sizes |Strain| ≥ C VC(C)

ϵ′
log
(

1
ϵ′δ

)
and |Xtest| ≥ C VC(C)

ϵ2
log
(

1
ϵδ

)
is a TDS learning algorithm for

C w.r.t. D that calls the ϵ′-ERM oracle once and the ϵ′-membership oracle |Strain| times, where ϵ is
the accuracy parameter, δ is the failure probability and ϵ′ such that ϵ′ · θ(ϵ′, d) ≤ ϵ/2.

Algorithm 3: Disagreement-Based TDS Learning
Input: Sets Strain from Dtrain

XY , Xtest from Dtest
X , parameter ϵ > 0

Set ϵ′ > 0 such that ϵ′ · θ(ϵ′, d) ≤ ϵ/2.
Run the Empirical Risk Minimization algorithm on Strain up to error ϵ′, i.e., compute
f̂ ∈ C with f̂ = argminf ′∈C P(x,y)∈Strain

[y ̸= f ′(x)]

Let Dϵ′(f̂ ;D) be as in Definition 10.
Reject and terminate if Px∼Xtest [x ∈ Dϵ′(f̂ ;D)] > ϵ/2.
Otherwise, output f̂ .

Proof of Theorem 14. Suppose that Strain is a set ofmtrain independent samples fromDtrain
XY , where

the marginal of Dtrain
XY on X is the distribution D. Let also Xtest be a set of mtest independent

unlabelled samples from Dtest
X . In what follows, let ϵ′ > 0 such that ϵ′θ(ϵ′, d) ≤ ϵ/2. The proof

follows a similar recipe as the one of Proposition 34. For the following, let f ∗ ∈ C be the label
generating function.

115

Soundness. Suppose that the algorithm accepts. Then, Px∼Xtest [x ∈ Dϵ′(f̂ ;D)] ≤ ϵ/2. Since
f̂ is an minimizes the empirical error on training data, by standard VC arguments, we have that
err(f̂ , f ∗;D) ≤ ϵ/2, whenever mtrain ≥ C VC(C)

ϵ′
log
(

1
ϵ′δ

)
, since Dtrain

X = D by assumption. There-
fore, by the definition of Dϵ′(f̂ ;D), for any x ̸∈ Dϵ′(f̂ ;D), we have f̂(x) = f ∗(x). Therefore, we
have

P
x∼Xtest

[f̂(x) ̸= f ∗(x)] ≤ P
x∼Xtest

[x ∈ Dϵ′(f̂ ;D)] ≤ ϵ/2

Whenever mtest ≥ C VC(C)
ϵ2

log
(

1
ϵδ

)
, we have Px∼Dtest

XY
[y ̸= f ∗(x)] ≤ Px∼Xtest [f̂(x) ̸= f ∗(x)] +

ϵ/2 ≤ ϵ.

Completeness. Suppose that Dtest
X = D. Then, by a standard Hoeffding bound, we have that

whenever mtest ≥ C 1
ϵ
log(1/δ), we have Px∼Xtest [x ∈ Dϵ′(f̂ ;D)] ≤ Px∼D[Dϵ′(f̂ ;D)] + ϵ/2 with

probability at least 1− δ and Px∼D[Dϵ′(f̂ ;D)] ≤ ϵ′θ(ϵ′, d) ≤ ϵ/2, by the choice of ϵ′.

3.8.2 TDS Learner for General Halfspaces

We now prove Theorem 15 which we restate here for convenience.

Theorem 21 (TDS learning of General Halfspaces). Let C be the class of general halfspaces over
Rd and C > 0 a sufficiently large universal constant. Then, Algorithm 4, given inputs of size
|Strain| = |Xtest| = CdC log 1/ϵ is a TDS learning algorithm for C w.r.t. the standard Gaussian
distribution N (0, Id) with run-time dO(log 1/ϵ), where ϵ is the accuracy parameter, and the failure
probability δ is at most 0.01.

Suppose the ground-truth halfspace f ∗(x) = sign(x · v − τ) is determined by a unit vector
v ∈ Rd and a value τ ∈ R. We will need the following showing that if a halfspace not too
biased under the standard Gaussian distribution, then it is possible to recover the parameters of the
halfspace up to a very high accuracy. See Subsection 3.8.2 for the proof.

Proposition 35 (Parameter recovery for halfspaces). For a sufficiently large absolute constant
C > 0, the following is true. For every β, γ ∈ (0, 1) and integer d, let Strain be a set of C(d

βγ
)C

i.i.d samples from a distribution Dtrain
XY such that Dtrain

X = N (0, Id) and the labels are given by an
unknown halfspace f : x 7→ sign(v · x − τ). Additionally, assume that the halfspace f satisfies
Px∈N (0,Id)[f

∗(x) = −1] ≥ γ and Px∈N (0,Id)[f
∗(x) = 1] ≥ γ. Let T = {v̂ ·x : (x, y) ∈ Strain} and

set

v̂ =

∑
(x,y)∈Strain

xy∥∥∥∑(x,y)∈Strain
xy
∥∥∥
2

and τ̂ = argmin
τ ′∈T

P
(x,y)∈Strain

[f ∗(x) ̸= sign(v̂ · x− τ ′)].

Then, with probability at least 1− 1/1000 we have ∥v − v̂∥2 ≤ β and |τ − τ̂ | ≤ β.

We also highlight two technical lemmas that we use for the analysis of Algorithm 4. Our first
technical lemma insures that if f is a halfspace that very likely assigns the same label to samples

116

Algorithm 4: TDS Learning of General Halfspaces
Input: Sets Strain from Dtrain

XY , Xtest from Dtest
X , parameter ϵ > 0

1: Set T = 2C
2
1 log 1

ϵ
+1, k = C1 log

1
ϵ
, ∆ = ϵ

dC2k
and β = ϵ2

C3dC3
.

2: if P(x,y)∼Strain
[y ̸= b] ≤ 1

T
for some b ∈ {±1} (large bias case) then

3: For each α ∈ Nd with ∥α∥1 ≤ k, compute the quantity M̂α = Ex∼Xtest [x
α].

4: Reject and terminate if |M̂α − Ex∼N (0,Id)[x
α]| > ∆ for some α with ∥α∥1 ≤ k.

5: Otherwise, output f̂ : Rd → {±1} and terminate, where f̂ : x 7→ b (f̂ constant).
6: else
7: Set v̂ =

E(x,y)∼Strain
[yx]

∥E(x,y)∼Strain
[yx]∥2 .

8: Let T = {v̂ · x : (x, y) ∈ Strain}.
9: Set τ̂ = argminτ∈T P(x,y)∈Strain

[f ∗(x) ̸= sign(v̂ · x− τ ′)],
10: Let V = {(v′, τ ′) : ∥v′ − v̂∥2 ≤ β, |τ ′ − τ̂ | ≤ β}.
11: For each x ∈ Xtest, compute the following quantities.

(v+
x , τ

+
x) = argmax

(v′,τ ′)∈V
v′ · x− τ ′ and (v−

x , τ
−
x) = argmin

(v′,τ ′)∈V
v′ · x− τ ′

12: Reject and terminate if Px∼Xtest [sign(v+
x · x− τ+x) ̸= sign(v−

x · x− τ−x)] > 10ϵ.
13: Otherwise, output f̂ : Rd → {±1} with f̂ : x 7→ sign(v̂ · x− τ̂).
14: end if

from the Gaussian distribution, then f also very likely assigns the same label to samples form a
distribution whose low-degree moments match those of a Gaussian. This lemma will be useful for
proving the soundness of Algorithm 4, and is proven in Section 3.8.2. (Recall that for x ∈ Rd we
denote

∏n
i=1 x

αi
i as xα.)

Lemma 14. When C1 and C2 both exceed some specific absolute constant, the following holds.
Let k and T be defined as in Algorithm 4. Suppose, the set Xtest is such that for every collection of
non-negative integers (α1, · · · , αd) satisfying

∑
i αi ≤ k we have∣∣∣∣ E

x∼Xtest

[xα]− E
x∼N (0,Id)

[xα]

∣∣∣∣ ≤ ϵ

dC2k
. (3.4)

Also, suppose the function f ∗(x) = sign(x · v − τ) and the value L ∈ {±1} are such that

P
x∼N (0,1)

[f ∗(x) ̸= L] ≤ 2

T
. (3.5)

Then, it is the case that
P

x∼Xtest

[f ∗(x) ̸= L] ≤ O(ϵ). (3.6)

Our second technical lemma bounds, for x chosen from the standard Gaussian, the probability
that one is unsure about f ∗(x) = sign(v·x−τ) when one only has approximate estimates for v̂ and

117

τ̂ for v and τ respectively. This lemma will be useful for proving the completeness of Algorithm
4, and is proven in Section 3.8.2.

Lemma 15. There is some absolute constant K1, such that for every positive integer d and β ∈
(0, 1), the following holds. Let v̂ be any unit vector in Rd and τ̂ be in R. Then, we have for
V = {(v′, τ ′) : ∥v′ − v̂∥2 ≤ β, |τ ′ − τ̂ | ≤ β}

P
x∼N (0,Id)

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤ K1d

K1
√
β (3.7)

Proof of Soundness.

In this subsection we show that if Algorithm 4 accepts then the output f̂ of our algorithm will
generalize on the distribution Dtest

X .

Proposition 36 (Soundness). For any sufficiently large absolute constant C, the following is true.
For any distribution Dtest

X and any halfspace f = sign(v̂ · x − τ̂), the following is true. It can
happen with probability only at most 1

100
that Algorithm 4 gives an output (ACCEPT, f̂) for some

predictor f̂ , but it is not the case that

P
x∼Dtest

X

[f ∗(x) ̸= f̂(x)] ≤ O(ϵ).

To prove this proposition, we first need to prove Lemma 14.

Proof of Lemma 14. First of all, we claim that Equation 3.5 implies that

|τ | ≥
√

1

2
log

T

2
(3.8)

Indeed, we have
2

T
≥ 1√

2π

∫ ∞

|τ |
e−z2/2dz ≥ |τ |e−2|τ |2 ≥ e−2|τ |2 ,

where the last inequality holds because for sufficiently large C1 the value of T and therefore |τ | is
sufficiently large and exceeds 1.

Recall that v is assumed to be a unit vector in Rd. Assume, without loss of generality, that
L = −1, and therefore τ > 0. We have

P
x∼Xtest

[sign(x · v − τ) ̸= −1] = P
x∼Xtest

[x · v ≥ τ] ≤ Ex∼Xtest [(x · v)k]
τ k

. (3.9)

To use this inequality, we need to upper-bound Ex∼Xtest [(x · v)k]. Since v is a unit vector, every
(of at most dk) terms of the polynomial mapping x ∈ Rd to (x ·v)k has coefficient at most 1. This,

118

together with Equation 3.4 and the triangle inequality, allows us to conclude that∣∣∣∣ E
x∼Xtest

[(x · v)k]− E
x∼N (0,Id)

[(x · v)k]
∣∣∣∣ ≤ dk

ϵ

dC2k
.

Now, since v is a unit vector, we have Ex∼N (0,Id)[(x · v)k] = k!! ≤ kk. Combining this with the
equation above, and Equation 3.9 and then substituting Equation 3.8 and the values of k and T we
get:

P
x∼Xtest

[sign(x · v − τ) ̸= −1] ≤ 1

|τ |k
(
kk/2 + dk

ϵ

dC2k

)
≤

1(
1
2
C2

1 log
1
ϵ

)C1 log
1
ϵ

((
C1 log

1

ϵ

)C1 log
1
ϵ

+ dk
ϵ

dC2k

)

We see that when C1 and C2 both exceed some absolute constant, the above expression is at most
ϵ, which completes the proof.

Having proven Lemma 14, we are now ready to prove Proposition 36.

Proof of Proposition 36. First, suppose the algorithm outputs (ACCEPT, L) for some L ∈ {±1}
via Step 5. For the algorithm to reach this step, it has to be that

P
x∈S

[f ∗(x) ̸= L] ≤ 1

T
,

Via Hoeffding’s inequality, if C is sufficiently large then with probability at least 1− 1
1000

it holds
that

| P
x∈S

[f ∗(x) ̸= L]− P
x∈S

[f ∗(x) ̸= L]| ≤ 1

2T
, (3.10)

and combining the two equations above

P
x∈N (0,Id)

[f ∗(x) ̸= L] ≤ 2

T
.

Furthermore, for the algorithm not output REJECT in Step 4, it has to be the case that for every
collection of non-negative integers (α1, · · · , αd) satisfying

∑
i αi ≤ k we have∣∣∣∣ E

x∼Xtest

[xα]− E
x∼N (0,Id)

[xα]

∣∣∣∣ > ϵ

dC2k
.

Overall, this allows us to apply Lemma 14 to conclude that

P
x∼Xtest

[f ∗(x) ̸= L] ≤ O(ϵ),

and, for a sufficiently large absolute constant C, with probability at least 1 − 1
1000

, this is only

119

possible if
P

x∼Dtest
X

[f ∗(x) ̸= L] ≤ O(ϵ),

which finishes the proof for the case when the algorithm accepts in Step 5.
Now, suppose the algorithm accepts in Step 13. For the algorithm to reach this step, it has to

be that
P

x∈S
[f ∗(x) ̸= L] >

1

T
,

And together with Equation 3.10, this implies that

P
x∈N (0,Id)

[f ∗(x) ̸= L] >
1

2T
.

For such f ∗ we can apply Proposition 35 and conclude that with probability at least 1 − 1/1000
the values of v̂ and τ obtained in Algorithm 4 satisfy

∥v − v̂∥2 ≤
(

ϵ

C3dC3

)2

= β, (3.11)

|τ − τ̂ | ≤
(

ϵ

C3dC3

)2

= β, (3.12)

where the last equality is by the definition of β. Now, since the algorithm did not reject in Step
12, it must be the case that the fraction of elements in Xtest that satisfy sign(v+

x · x − τ+x) ̸=
sign(v−

x · x − τ−x) is at most 10ϵ. If C is a sufficiently large absolute constant, the standard
Hoeffding inequality tells us that for this to happen with probability larger than 1/1000 it has to be
the case that

P
x∼Dtest

X

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤ 11ϵ.

Whenever the event above occurs, since V = {(v′, τ ′) : ∥v′ − v̂∥2 ≤ β, |τ ′ − τ̂ | ≤ β} we can use
Equations 3.11 and 3.12 to conclude sign(v · x− τ) = sign(v̂ · x− τ̂). Therefore,

P
x∼Dtest

X

[sign(v · x− τ) ̸= sign(v̂ · x− τ̂)] ≤ 11ϵ

This completes the proof of soundness of Algorithm 4.

Proof of Completeness.

The second proposition shows that if the testing distribution is the standard Gaussian, then the
algorithm will likely accept. Together, propositions 36 and 37 yield Theorem 15.

Proposition 37 (Completeness). For sufficiently large value of the absolute constants C and C3

and for any halfspace f = sign(v̂ · x − τ̂), suppose the testing distribution Dtest
X is the standard

120

Gaussian distribution. Then, with probability at least 1 − 1
100

Algorithm 4 will accept, i.e. output
(ACCEPT, f̂) for some f̂ .

To prove this proposition, we first need to prove Lemma 15.

Proof of Lemma 15. We have Ex∼N (0,Id)[∥x∥
2
2] = d. Therefore, by Markov’s inequality, we have

P
x∼N (0,Id)

[
∥x∥2 >

√
d√
β

]
= P

x∼N (0,Id)

[
∥x∥22 >

d

β

]
≤ β (3.13)

Additionally, from the bound of 1√
2π

on the density of standard Gaussian in one dimension, we get:

P
x∼N (0,Id)

[
|v̂ · x− τ̂ | ≤ 100

√
βd+ β

]
≤ 200

√
βd+ 2β√
2π

(3.14)

If it holds that ∥x∥2 ≤
√
d√
β

, we have for every v′ satisfying ∥v′ − v̂∥2 ≤ β and any τ ′ satisfying
|τ ′ − τ̂ | ≤ β that

|v′ · x− τ ′ − (v̂ · x− τ̂)| ≤
√
dβ + β

Therefore, if it is also the case that |v̂ · x− τ̂ | > 100
√
βd+ β, then we have

sign (v′ · x− τ ′) = sign (v̂ · x− τ̂)

This allows us to conclude that

P
x∼N (0,Id)

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤

P
x∼N (0,Id)

[
∥x∥2 >

√
d√
β

]
+ P

x∼N (0,Id)

[
|v̂ · x− τ̂ | ≤ 100

√
βd+ β

]
≤ β +

200
√
βd+ 2β√
2π

,

where in the end we substituted Equation 3.13 and Equation 3.14. Recalling that for β ∈ (0, 1) we
have β <

√
β and picking K1 to be a sufficiently large absolute constant, our proposition follows

from the inequality above.

Having proven Lemma 15, we are now ready to prove Proposition 37.

Proof of Proposition 37. There are two ways for the algorithm to output REJECT: through Step 4
and through Step 12. We will argue neither takes place. From standard Gaussian concentration, if
C is a sufficiently large absolute const ant, with probability at least 1− 1

1000
the algorithm will not

output REJECT in Step 4.
We now proceed to ruling out the possibility that the algorithm outputs REJECT in Step 12.

121

For the algorithm to reach step Step 12, it is necessary that

P
x∈S

[f ∗(x) ̸= L] >
1

T
,

Via Hoeffding’s inequality, if C is sufficiently large then with probability at least 1− 1
1000

it holds
that |Px∈S[f

∗(x) ̸= L]−Px∈S[f
∗(x) ̸= L]| ≤ 1

2T
, which together with the equation above implies

that
P

x∈N (0,Id)
[f ∗(x) ̸= L] >

1

2T
.

For such f ∗ we can apply Proposition 35 and conclude that with probability at least 1−1/1000
the values of v̂ and τ obtained in Algorithm 4 satisfy

∥v − v̂∥2 ≤
(

ϵ

C3dC3

)2

= β, (3.15)

|τ − τ̂ | ≤
(

ϵ

C3dC3

)2

= β, (3.16)

Recall that V = {(v′, τ ′) : ∥v′ − v̂∥2 ≤ β, |τ ′ − τ̂ | ≤ β}. The equation above together with
Lemma 15 implies that

P
x∼N (0,Id)

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤ K1d

K1
ϵ

C3dC3
≤ ϵ,

where the last inequality holds for sufficiently large value of C3. Combining the inequality above
with the standard Hoeffding bound and recalling thatDtest

X = N (0, Id), we see that with probability
at least 1− 1

1000
,

P
x∼Xtest

[
sign

(
max

(v′,τ ′)∈V
v′ · x− τ ′

)
̸= sign

(
min

(v′,τ ′)∈V
v′ · x− τ ′

)]
≤ 2ϵ,

In conclusion, we see that the inequality above implies that the algorithm does not output REJECT
in Step 12. This completes our proof.

Parameter recovery.

Here we prove Proposition 35, which was used in the proofs of Proposition 36 and Proposi-
tion 37, thereby finishing the proof of Theorem 15. Let us first recall the setting of Proposition 35.
For a unit vector v in Rd and τ ∈ R satisfying

min

(
P

x∈N (0,Id)
[v · x− τ > 0], P

x∈N (0,Id)
[v · x− τ < 0]

)
≥ η,

122

Strain is a set of C
(

d
ηβ

)C
i.i.d samples from a distribution Dtrain

XY with X -marginal distributed as
standard Gaussian and Y-marginal given by the halfspace f = sign(v · x − τ). The absolute
constant C is assumed to be sufficiently large. We let T = {v̂ · x : (x, y) ∈ Strain} and set

v̂ =

∑
(x,y)∈Strain

xy∥∥∥∑(x,y)∈Strain
xy
∥∥∥
2

τ̂ = argmin
τ ′∈T

P
(x,y)∈Strain

[f ∗(x) ̸= sign(v̂ · x− τ ′)].

We would like to prove that with probability at least 29/30 we have

∥v − v̂∥2 ≤ β,

|τ − τ̂ | ≤ β.

The following proposition tells us that the first inequality above is likely to hold:

Proposition 38 (Recovery of normal vector for halfspaces). For a sufficiently large absolute con-
stant C, and every η, β ∈ (0, 1) and integer d, the following holds. Let Strain is a set of at least

C
(

d
ηβ

)C
i.i.d samples from a distribution Dtrain

XY with X -marginal distributed as standard Gaus-

sian and Y-marginal given by the halfspace f = sign(v ·x− τ). For every unit vector v in Rd and
τ ∈ R satisfying

min

(
P

x∈N (0,Id)
[v · x− τ > 0], P

x∈N (0,Id)
[v · x− τ < 0]

)
≥ η,

The vector v̂ =
∑

(x,y)∈Strain
xy

∥∑(x,y)∈Strain
xy∥

2

with probability at least 1− 1
2000

satisfies:

∥v − v̂∥2 ≤ β,

Once this stage is accomplished, the next proposition tells us that we can recover the offset τ .

Proposition 39 (Offset recovery for halfspaces). For a sufficiently large absolute constant C, and

every η, γ ∈ (0, 1) and integer d, the following holds. Let Strain is a set of at least C
(

d
ηγ

)C
i.i.d samples from a distribution Dtrain

XY with X -marginal distributed as standard Gaussian and Y-
marginal given by the halfspace f = sign(v · x − τ). For every unit vector v in Rd and τ ∈ R
satisfying

min

(
P

x∈N (0,Id)
[v · x− τ > 0], P

x∈N (0,Id)
[v · x− τ < 0]

)
≥ η,

Then, with probability at least 1 − 1
2000

, for every unit vector v̂ that forms an angle of at most γ

123

with v the value
τ̂ = argmin

τ ′∈R
P

(x,y)∈Strain

[f ∗(x) ̸= sign(v̂ · x− τ ′)].

satisfies

|τ − τ̂ | ≤ O

(
1

η50
√
γ

)
.

Formally, Proposition 35 follows from the two propositions above as follows. One first uses
Proposition 38 to conclude that, for any absolute constant C5, there is a value of the absolute
constant C for which with probability 1 − 1

2000
a vector v̂ that satisfies ∥v − v̂∥ ≤ 1

C5
β2η100.

This implies that the angle between v and v̂ is upper-bounded by 10
C5
β2η100. Then, if the absolute

constant C5 is large enough, if we use Proposition 39, then with probability 1 − 1
2000

the value τ̂
satisfies |τ − τ̂ | ≤ β, finishing the proof of Proposition 35.

Now, proceed to prove the two propositions above. We start with Proposition 38.

Proof of Proposition 38. Let {e1, · · · ed−1} form an orthonormal basis for the subspace orthogonal
to v. Since all the projections {v · x, e1 · x, · · · , ed−1 · x} are independent standard Gaussians and
f ∗(x) = sign(v · x− τ) we have for all i

E
x∈N (0,Id)

[ei · xf ∗(x)] = 0.

At the same time

E
x∈N (0,Id)

[v · xf(x)] =
∫ +∞

t=−∞
tsign(t− τ) 1√

2π
dt =∫

t∈[−|τ |,|τ |]
tsign(t− τ) 1√

2π
dt+

∫
t∈[−∞,−|τ |]∪[|τ |,+∞]

tsign(t− τ) 1√
2π

dt =
2√
2π

∫ ∞

t=|τ |
t dt

For some positive absolute constant K2, the final expression above is at least K2 Pt∼N(0,1)[t > τ],
because if |τ | > 1, then one can lower-bound the expression above by 2√

2π

∫∞
t=|τ | dt. On the other

hand, if |τ | ∈ [0, 1], then the expression on the right side is at least 2√
2π

∫∞
t=1

dt which is a positive
absolute constant, while Pt∼N(0,1)[t > τ] is always upper-bounded by 1. Overall, we have

E
x∈N (0,Id)

[v · xf ∗(x)] ≥ K2 P
t∼N(0,1)

[t > τ]

= K2min

(
P

x∈N (0,Id)
[v · x− τ > 0], P

x∈N (0,Id)
[v · x− τ < 0]

)
≥ K2η.

Now, we bound the variance of xf ∗(x). Since f ∗(x) ∈ {±1}, we have

E
x∈N (0,Id)

[
(ei · xf ∗(x))2

]
= E

x∈N (0,Id)

[
(ei · x)2

]
= 1,

124

E
x∈N (0,Id)

[
(v · xf ∗(x))2

]
= E

x∈N (0,Id)

[
(v · x)2

]
= 1.

This allows us to use the Chebychev’s inequality together with the union bound to conclude that
with probability at least 1− 1

2000
we have for all i

|Ex∈S[ei · xf ∗(x)]| ≤
√

60d

N
,

and also

Ex∈S[v · xf ∗(x)] ≥ K2η −
√

60d

N
,

Recalling that v̂ =
∑

x∈S1
xf∗(x)

∥∑x∈S1
xf∗(x)∥

2

=
Ex∈S1

xf∗(x)

∥Ex∈S1
xf∗(x)∥

2

, we see that

|v̂ · ei| ≤

√
60d
N

K2η −
√

60d
N

Substituting N = C(d
ηβ
)C , and letting C be a sufficiently large absolute constant, we obtain from

above implies that |v̂ · ei| ≤ β

10
√
d
. Since ∥v̂∥ = 1 we have

1 ≥ |v̂ · v| ≥
√

1− β

10
≥ 1− β

10
,

we also see that taking C to be a sufficiently large absolute constant also ensures that v̂ · v > 0, so
overall we get

∥v̂ − v∥ ≤ β,

which finishes the proof.

In order to prove Proposition 39, we will need a proposition that relates the following two
quantities: (1) the difference in offsets τ1 and τ2 of two halfspaces (2) The probability that these
two hafspaces disagree on a point drawn from the standard Gaussian.

Proposition 40. There is some absolute constant K1 such that for any pair of unit vectors v1,v2 ∈
Rd and a pair of real numbers τ1, τ2, letting γ denote the angle between v1 and v2, the following
holds. Suppose γ < π/4, then

P
x∈N (0,Id)

[sign (v1 · x− τ1) ̸= sign (v2 · x− τ2)] ≥
1

K1

e−τ21 /2min

(∣∣∣∣τ1 − τ2
cos γ

∣∣∣∣ , 1

|τ1|+ 1

)
(3.17)

It is also the case that

P
x∈N (0,Id)

[sign (v1 · x− τ1) ̸= sign (v2 · x− τ1 cos γ)] ≤ K1
√
γ (3.18)

125

Proof. To prove this, we first show that for any z ∈ R, conditioned on v1 · x = z1 the distribution
of v2 · x is N (z1 cos γ, sin γ). Indeed, let v3 be the unit vector that one obtains by first projecting
v2 into the subspace perpendicular to v1, and then normalizing the resulting vector to have unit
norm. This means v3 is orthogonal to v1 and we have

v2 = v1 cos γ + v3 sin γ.

Therefore
x · v2 = x · v1 cos γ + x · v3 sin γ

Now, since x · v1 and x · v3 are distributed as i.i.d. one-dimensional standard Gaussians. Thus,
conditioning on x · v1 = z1 we get that x · v2 is distributed as N (z cos γ, sin γ).

Our observation allows us to write:

P
x∈N (0,Id)

[sign (v1 · x− τ1) ̸= sign (v2 · x− τ2)] =

P
z1,z2∈N (0,1)

[sign (z1 − τ1) ̸= sign (z1 cos γ + z2 sin γ − τ2)] =

P
z1,z2∈N (0,1)

[sign (z1 − τ1) ̸= sign (z1 + z2 tan γ − τ2/ cos γ)] (3.19)

Let us first focus on the case when γ ∈ [0, π/2). We see that

P
z1,z2∈N (0,1)

[sign (z1 − τ1) ̸= sign (z1 + z2 tan γ − τ2/ cos γ)] ≥

1

2
P

z1∈N (0,1)
[sign (z1 − τ1) ̸= sign (z1 − τ2/ cos γ)] (3.20)

The reason that inequality above is true is that, conditioned on a specific value of z1, if z1 >
τ2/ cos γ, then z1 + z2 tan γ − τ2 is more likely to be positive than negative. At the same time, if
z1 < τ2/ cos γ, then z1 + z2 tan γ − τ2 is more likely to be negative than positive.

We lower-bound the probability above as follows. LetA be the interval of R defined as follows:

A :=

{
z ∈ R : sign(z − τ1) ̸= sign(z − τ2/ cos γ) & |z − τ1| ≤

1

|τ1|+ 1

}
We have

P
z1∈N (0,1)

[sign (z1 − τ1) ̸= sign (z1 − τ2/ cos γ)] ≥ P
z1∈N (0,1)

[z1 ∈ A] ≥

≥ min

(∣∣∣∣τ1 − τ2
cos γ

∣∣∣∣ , 1

|τ1|+ 1

)
1√
2π
e
− 1

2

(
|τ1|− 1

|τ1|+1

)2

≥ Ω(1) ·min

(∣∣∣∣τ1 − τ2
cos γ

∣∣∣∣ , 1

|τ1|+ 1

)
e−τ21 /2, (3.21)

126

which, combined with Equations 3.19 and 3.20, finishes the proof of Equation 3.17.
Now, we proceed to proving Equation 3.18. We proceed as follows:

P
z1,z2∈N (0,1)

[sign (z1 − τ1) = sign (z1 + z2 tan γ − τ1)]

≥ P
z1,z2∈N (0,1)

[
|z1 − τ1| >

√
tan γ & |z2| <

1√
tan γ

]
≥ 1−O(1) ·

√
tan γ −O(1)

∫ ∞

1√
tan γ

e−z2/2 dz

= 1−O(
√
tan γ) = 1−O(√γ),

which, when combining with with Equation 3.19 and substituting τ2 = τ1 cos γ, proves Equation
3.18.

Having proven Proposition 40, we are now ready to prove Proposition 39.

Proof of Proposition 39. Recall that T = {v̂ · x : (x, y) ∈ Strain}. We see for τ ′ between two
neighboring elements of T the value of Px∈N(0,I)[f

∗(x) ̸= sign(v̂·x−τ ′)] stays the same. Therefore

P
x∈T

[f ∗(x) ̸= sign(v̂·x−τ̂)] = min
τ ′∈T

P
x∈T

[f ∗(x) ̸= sign(v̂·x−τ ′)] = min
τ ′∈R

P
x∈T

[f ∗(x) ̸= sign(v̂·x−τ ′)].
(3.22)

Since the function class {sign(v′ · x − τ ′ : v′ ∈ Rd, τ ′ ∈ R} has a VC dimension of d + 1, the
standard VC bound tells us that for sufficiently large absolute constant C with probability at least
1− 1

2000
we have for every τ ′ ∈ R and unit vector v̂ that∣∣∣∣ P
x∈N(0,I)

[f ∗(x) ̸= sign(v̂ · x− τ ′]− P
x∈T

[f ∗(x) ̸= sign(v̂ · x− τ ′)]
∣∣∣∣ ≤ √γ (3.23)

From Equation 3.18 in Proposition 40 we have that

min
τ ′∈R

P
x∈N(0,I)

[f ∗(x) ̸= sign(v̂ · x− τ ′)] ≤ K1
√
γ ≤ O(

√
γ) (3.24)

We now upper-bound |τ | in terms η as follows:

|τ | ≤ 10

√
log

1

η
, (3.25)

For |τ | < 1, this is immediate, because the probability that the Gaussian exceeds one standard
deviation in a given direction is at least 1/10. For |τ | ≥ 1, we write

η ≥
∫ ∞

|τ |
e−t2/2 dt ≥ 1

|τ |
e−(|τ |+1/|τ |)2/2 ≥ 1

e2
· 1

|τ |
e−|τ |2/2,

which proves Equation 3.25.

127

Taking Equation 3.17 in Proposition 40 and substituting Equation 3.25 we get

P
x∈N (0,Id)

[f(x) ̸= sign (v̂ · x− τ̂)] ≥ 1

K1

e−τ21 /2min

(∣∣∣∣τ − τ̂

cos γ

∣∣∣∣ , 1

|τ |+ 1

)
≥

η50

K1

min

(∣∣∣∣τ − τ̂

cos γ

∣∣∣∣ , 1)
Combining the above with Equation 3.22, Equation 3.23 and Equation 3.24 we get∣∣∣∣τ − τ̂

cos γ

∣∣∣∣ ≤ K1

η50
(O(
√
γ) +

√
γ) ≤ O(

√
γ/η50).

Finally, we see that

|τ − τ̂ | ≤
∣∣∣∣τ − τ̂

cos γ

∣∣∣∣+ ∣∣∣∣τ̂ − τ̂

cos γ

∣∣∣∣ ≤ O(
√
γ/η50) +O(

√
log(1/η)γ2) = O(

√
γ/η50).

This completes the proof of Proposition 39.

3.9 TDS Learning Through Moment Matching

3.9.1 L2-Sandwiching Implies TDS Learning

We now prove Theorem 16 which we restate here for convenience.

Theorem 22 (L2-sandwiching implies TDS Learning). Let D be a distribution over a set X ⊆ Rd

and let C ⊆ {X → {±1}} be a concept class. Let ϵ, δ ∈ (0, 1), ϵ′ = ϵ/100 δ′ = δ/2 and assume
that the following are true.

(i) (L2-Sandwiching) The ϵ′-approximate L2-sandwiching degree of C underD is at most k with
coefficient bound B.

(ii) (Moment Concentration) If X ∼ D⊗m and m ≥ mconc then, with probability at least 1− δ′,
we have that for any α ∈ Nd with ∥α∥1 ≤ k it holds |EX [x

α]− ED[x
α]| ≤ ϵ′

B2d4k
.

(iii) (Generalization) If S ∼ D⊗m
XY where DXY is any distribution over X × {±1} such that

DX = D and m ≥ mgen then, with probability at least 1− δ′ we have that for any degree-k
polynomial p with coefficient bound B it holds |EDXY [(y − p(x))2]− ES[(y − p(x))2]| ≤ ϵ′.

Then, Algorithm 5, upon receiving mtrain ≥ mgen labelled samples Strain from the training
distribution and mtest ≥ C · d

k+log(1/δ)
ϵ2

+mconc unlabelled samples Xtest from the test distribution
(where C > 0 is a sufficiently large universal constant), runs in time poly(|Strain|, |Xtest|, dk) and
TDS learns C with respect to D up to error 32λ+ ϵ and with failure probability δ.

128

Algorithm 5: TDS Learning through Moment Matching
Input: Sets Strain from Dtrain

XY , Xtest from Dtest
X , parameters ϵ > 0, δ ∈ (0, 1),

k ∈ N, B > 0
Set ϵ′ = ϵ/100, δ′ = δ/2 and ∆ = ϵ′

B2d4k

For each α ∈ Nd with ∥α∥1 ≤ 2k, compute the quantity
M̂α = Ex∼Xtest [x

α] = Ex∼Xtest

[∏
i∈[d] x

αi
i

]
Reject and terminate if |M̂α − Ex∼D[x

α]| > ∆ for some α with ∥α∥1 ≤ 2k.
Otherwise, solve the following least squares problem on Strain up to error ϵ′

min
p
E(x,y)∼Strain

[
(y − p(x))2

]
s.t. p is a polynomial with degree at most k

each coefficient of p is absolutely bounded by B

Let p̂ be an ϵ′-approximate solution to the above optimization problem.
Accept and output h : X → {±1} where h : x 7→ sign(p̂(x)).

One key ingredient of the proof of Theorem 16 is the following transfer lemma which states
that moment matching implies that the empirical squared loss between two polynomials on the test
distribution is close to their expected squared loss under the target distribution.

Lemma 16 (Transfer Lemma for Square Loss). Let D be a distribution over X ⊆ Rd and Xtest a
(multi)set of points in Rd. If |Ex∼Xtest [x

α]− Ex∼D[x
α]| ≤ ∆ for all α ∈ Nd with ∥α∥1 ≤ 2k, then

for any degree k polynomials p1, p2 with coefficients that are absolutely bounded by B, it holds∣∣∣Ex∼Xtest [(p1(x)− p2(x))2]− Ex∼D[(p1(x)− p2(x))2]
∣∣∣ ≤ B2 · d4k ·∆

Proof. The polynomials p1, p2 all have degree at most k and coefficients that are absolutely bounded
by B. Therefore, the polynomial (p1 − p2)2 has degree at most 2k and coefficients that are abso-
lutely bounded by B2d2k. Let p′ = (p1 − p2)2 =

∑
α:∥α∥1≤2k p

′
αx

α (with |p′α| ≤ B2d2k as argued
above) which gives the following.

∥p1 − p2∥2L2(Xtest) = Ex∼Xtest

[
(p1(x)− p2(x))2

]
= Ex∼Xtest [p

′(x)]

It remains to relate Ex∼Xtest [p
′(x)] to Ex∼D [p′(x)], which follows by the moment-matching as-

129

sumption.∣∣∣Ex∼Xtest [p
′(x)]− Ex∼D [p′(x)]

∣∣∣ =∣∣∣∣ ∑
α:∥α∥1≤2k

p′α (Ex∼Xtest [x
α]− Ex∼D [xα])

∣∣∣∣
≤

∑
α:∥α∥1≤2k

|p′α| · |Ex∼Xtest [x
α]− Ex∼D [xα]|

=
∑

α:∥α∥1≤2k

|p′α| ·
∣∣∣M̂α −Mα

∣∣∣
≤ d2k ·B2 · d2k ·∆ ,

which concludes the proof of the lemma.

We are now ready to prove Theorem 16.

Proof of Theorem 16. For the following, let Dtrain
XY be the training distribution, Dtest

XY the test distri-
bution (both over X × {±1}) and Dtrain

X ,Dtest
X the corresponding marginal distributions over X .

We assume that Dtrain
X = D. Let mtrain = |Strain| and mtest = |Xtest|, ϵ′ = ϵ/100, δ′ = δ/2, k, B

as defined in condition (i). We also set ∆ = ϵ′

B2d4k
and mconc as defined in condition (ii), as well as

mgen as defined in (iii).

Soundness. Suppose that Algorithm 5 accepts and outputs h = sign(p̂). For the following, let
λtrain = err(f ∗;Dtrain

XY) and λtest = err(f ∗;Dtest
XY) (where we have λ = λtrain + λtest). We can

bound the error of the hypothesis h on Dtest
XY as follows

err(h;Dtest
XY) ≤ err(f ∗;Dtest

XY) + err(f ∗, h;Dtest
X)

= λtest + E[err(f ∗, h;Xtest)] ,

where the expectation above is over Xtest ∼ (Dtest
X)⊗mtest . Denote err(h;Dtest

XY) = PDtest
XY

[y ̸=
h(x)] and err(h1, h2;Dtest

X) = PDtest
X

[h1(x) ̸= h2(x)] and use the fact that for random variables
y1, y2, y3 ∈ {±1}, it holds P[y1 ̸= y2] ≤ P[y1 ̸= y3] + P[y2 ̸= y3]. Since h is the sign of a
polynomial with degree at most k = k(ϵ′) (see Algorithm 5) and the class of functions of this form
has VC dimension at most dk (e.g., by viewing it as the class of halfspaces in dk dimensions) we
have that whenever mtest ≥ C · d

k+log(1/δ′)
ϵ′2

for some sufficiently large universal constant C > 0 the
following is true with probability at least 1− δ′ over the distribution of Xtest.

E[err(f ∗, h;Xtest)] ≤ err(f ∗, h;Xtest) + ϵ′

130

Therefore, it is sufficient to bound the quantity err(f ∗, h;Xtest). We now observe the following
simple fact.

Ex∼Xtest [(f
∗(x)− p̂(x))2] ≥ P

Xtest

[f ∗(x) = 1, p̂(x) < 0] + P
Xtest

[f ∗(x) = −1, p̂(x) ≥ 0]

= P
Xtest

[f ∗(x) ̸= signp̂(x)]

= err(f ∗, h;Xtest)

Therefore, we have err(f ∗, h;Xtest) ≤ ∥f ∗ − p̂∥2L2(Xtest)
. Let pup, pdown be ϵ′-approximate L2

sandwiching polynomials for f ∗ of degree at most k = k(ϵ′) and with coefficient boundB = B(ϵ′).
The right hand side can be bounded as follows.

∥f ∗ − p̂∥L2(Xtest) ≤ ∥f ∗ − pdown∥L2(Xtest) + ∥pdown − p̂∥L2(Xtest)

≤ ∥pup − pdown∥L2(Xtest) + ∥pdown − p̂∥L2(Xtest)

In the last inequality, we used the fact that pdown(x) ≤ f ∗(x) ≤ pup(x) for any x ∈ X . We will
now compare ∥pup − pdown∥L2(Xtest) to ∥pup − pdown∥L2(D) (and, similarly, ∥pdown − p̂∥L2(Xtest) to
∥pdown − p̂∥L2(D)) using the transfer lemma (Lemma 16). The polynomials pup, pdown, p̂ all have
degree at most k and coefficients that are absolutely bounded by B. Moreover, since Algorithm 5
has accepted, we have that for any α ∈ Nd with ∥α∥1 ≤ 2k, the following is true∣∣∣M̂α −Mα

∣∣∣ ≤ ∆ , (3.26)

where M̂ = Ex∼Xtest [x
α] (recall that xα =

∏
i∈[d] x

αi
i), M = Ex∼D[x

α] and ∆ = ϵ′

B2d4k
. Therefore,

by applying Lemma 16, we obtain that ∥pup − pdown∥L2(Xtest) ≤ ∥pup − pdown∥L2(D) +
√
ϵ′ and,

similarly, ∥pdown − p̂∥L2(Xtest) ≤ ∥pdown − p̂∥L2(D) +
√
ϵ′.

We have assumed that pup, pdown are ϵ′-approximate L2 sandwiching polynomials for f ∗ and,
therefore ∥pup − pdown∥L2(D) =

√
∥pup − pdown∥2L2(D) ≤

√
ϵ′ (see Definition 11). We bound the

quantity ∥pdown − p̂∥L2(D) as follows.

∥pdown − p̂∥L2(D) ≤ ∥pdown − f ∗∥L2(D) + ∥f ∗ − p̂∥L2(D)

≤ ∥pup − pdown∥L2(D) + ∥f ∗ − p̂∥L2(D) (since pdown ≤ f ∗ ≤ pup)

≤
√
ϵ′ + ∥f ∗ − p̂∥L2(D) (3.27)

Recall that ∥f ∗ − p̂∥2L2(D) = Ex∼D[(p̂(x) − f ∗(x))2]. By assumption, Dtrain
X = D and therefore

Ex∼D[(p̂(x) − f ∗(x))2] = Ex∼Dtrain
X

[(p̂(x) − f ∗(x))2]. Moreover, we can view the expectation to
be over the joint distribution (x, y) ∼ Dtrain

XY (coupling of x and y), but the variable y is ignored,
i.e., Ex∼Dtrain

X
[(p̂(x) − f ∗(x))2] = E(x,y)∼Dtrain

XY
[(p̂(x) − f ∗(x))2]. We can bound the latter term as

131

follows.

E(x,y)∼Dtrain
XY

[(p̂(x)− f ∗(x))2]1/2 = E(x,y)∼Dtrain
XY

[(p̂(x)− y + y − f ∗(x))2]1/2

≤ EDtrain
XY

[(p̂(x)− y)2]1/2 + EDtrain
XY

[(y − f ∗(x))2]
1/2

For the term E(x,y)∼Dtrain
XY

[(p̂(x)−y)2], we use condition (iii) to have with probability at least 1−δ′,
|E(x,y)∼Dtrain

XY
[(p̂(x)− y)2]− E(x,y)∼Strain

[(p̂(x)− y)2]| ≤ ϵ′ whenever mtrain ≥ mgen. We now use
the fact that p̂ is an ϵ′-approximate solution to the least squares problem defined in Algorithm 5
and have the following bound

E(x,y)∼Strain
[(p̂(x)− y)2]1/2 ≤ E(x,y)∼Strain

[(pdown(x)− y)2]1/2 +
√
ϵ′

Therefore, due to the generalization condition we have

E(x,y)∼Dtrain
XY

[(p̂(x)− y)2]1/2 ≤ E(x,y)∼Dtrain
XY

[(pdown(x)− y)2]1/2 + 3
√
ϵ′

≤ ∥pdown − f ∗∥L2(Dtrain
X) + E(x,y)∼Dtrain

XY
[(y − f ∗(x))2]1/2 + 3

√
ϵ′

≤ ∥pdown − pup∥L2(D) + E(x,y)∼Dtrain
XY

[(y − f ∗(x))2]1/2 + 3
√
ϵ′

≤ E(x,y)∼Dtrain
XY

[(y − f ∗(x))2]1/2 + 4
√
ϵ′

Therefore, we have shown that ∥f ∗ − p̂∥L2(D) ≤ 4EDtrain
XY

[(y − f ∗(x))2]1/2 + 2
√
ϵ′. Note that

EDtrain
XY

[(y−f ∗(x))2] = 4PDtrain
XY

[y ̸= f ∗(x)] = 4λtrain. Therefore, ∥f ∗−p̂∥L2(D) ≤ 4
√
λtrain+4

√
ϵ′.

By Equation (3.27), this implies ∥pdown − p̂∥L2(D) ≤ 4
√
λtrain + 5

√
ϵ′, which in turn implies

∥pdown − p̂∥L2(Xtest) ≤ 4
√
λtrain + 7

√
ϵ′. We overall obtain the following bound.

err(h;Dtest
XY) ≤ λtest + (4λ

1/2
train + 7

√
ϵ′)2

≤ λtest + 32λtrain + 100ϵ′

≤ 32λ+ ϵ (since ϵ′ = ϵ/100 and λtest ≥ 0)

Note that, in fact, we have also demonstrated that upon acceptance, the following is true.

err(f ∗, h;Dtest
X) ≤ 32λtrain + ϵ

The results above holds with probability at least 1−3δ′ = 1−δ (union bound over two bad events).

Completeness. For completeness, it is sufficient to ensure that mtest ≥ mconc, because then, the
probability of acceptance is at least 1− δ, due to condition (ii), as required.

132

3.9.2 Applications

In this section, we apply our main result in Theorem 16 to obtain a number of TDS learners for
important concept classes with respect to Gaussian and Uniform target marginals. In particular, we
will use the following corollary, which follows by Theorem 16 and some simple properties of the
Gaussian and Uniform distributions (see Lemmas 20 and 21).

Corollary 1. Let D be either the standard Gaussian in d dimensions or the uniform distribution
over the d-dimensional hypercube. Let C be a concept class whose ϵ-approximate sandwiching
degree with respect to D is k. Then, there is an algorithm that runs in time dO(k)and TDS learns C
up to error 32λ+O(ϵ) and failure probability at most 0.1.

Boolean Classes. We now bound the L2 sandwiching degree of bounded size Decision trees and
bounded size and depth Boolean Formulas.

Lemma 17 (L2 sandwiching degree of Decision Trees). Let D be the uniform distribution over the
hypercube X = {±1}d. For s ∈ N, let C be the class of Decision Trees of size s. Then, for any
ϵ > 0 the L2 sandwiching degree of C is at most k = O(log(s/ϵ)).

Proof. Let f ∈ C be a decision tree of size s. Consider the polynomials pup, pdown over {±1}d
which correspond to the following truncated decision trees. For pup, we truncate f at depth k and
substitute the internal nodes at depth k with leaf nodes labelled 1. Then, pup corresponds to a
sum of polynomials of degree at most k, each corresponding to a root-to-leaf path in the truncated
decision tree. Clearly, pup ≥ f and pup has degree k. We have that ED[(pup(x)− f(x))2] is upper
bounded by a constant multiple of the probability that pup takes the value 1, while f(x) takes the
value −1, since pup is itself a Boolean-valued function (it is a decision tree). The probability that
this happens is at most s · 2−k = O(ϵ) for k = O(log(s/ϵ)). We obtain pdown by a symmetric
argument.

For the following lemma, we make use of an upper bound for the pointwise distance between a
Boolean formula and the best approximating low-degree polynomial from [OS03] (which readily
implies the existence of low-degree L2 sandwiching polynomials).

Lemma 18 (L2 SD of Boolean Formulas, Theorem 6 in [OS03]). LetD be the uniform distribution
over the hypercube X = {±1}d. For s, ℓ ∈ N, let C be the class of Boolean formulas of size
at most s, depth at most ℓ. Then, for any ϵ > 0 the L2 sandwiching degree of C is at most
k = (C log(s/ϵ))5ℓ/2

√
s, for some sufficiently large universal constant C > 0.

Proof. Let f ∈ C be an formula of size s and depth ℓ. We first construct a polynomial p that
satisfies |p(x)−f(x)| ≤

√
ϵ/2 for any x ∈ {±1}d. This corresponds to a slight modification of the

proof of Theorem 6 in [OS03], where the basis of the inductive construction of p (see Lemma 10 in
[OS03]) is an O(

√
ϵ/s3) bound (instead of the original 1/s3 bound) for the (trivial) approximation

of a single variable xi by itself. The degree of p is indeed upper bounded by (C log(s/ϵ))5ℓ/2
√
s

and we may obtain pup, pdown by setting pup(x) = p(x) +
√
ϵ/2 and pdown = p(x) −

√
ϵ/2.

133

Clearly, pdown(x) ≤ f(x) ≤ pup(x) and |pup(x) − pdown(x)| =
√
ϵ for all x ∈ {±1}d. Therefore

∥pup − pdown∥2L2(D) ≤ ϵ.

We obtain the following results for agnostic TDS learning of boolean concept classes.

Corollary 2 (TDS Learner for Decision Trees). Let D be the uniform distribution over the hyper-
cube in d dimensions. Then, there is an algorithm that runs in time dO(log(s/ϵ)) and TDS learns
Decision Trees of size s with respect to Unif({±1}d) up to error 32λ+O(ϵ).

Corollary 3 (TDS Learner for Boolean Formulas). Let D be the uniform distribution over the
hypercube in d dimensions and C > 0 some sufficiently large universal constant. Then, there is
an algorithm that runs in time d

√
s(C log(s/ϵ))5ℓ/2 and TDS learns Boolean formulas of size at most s

and depth at most ℓ with respect to Unif({±1}d) up to error 32λ+O(ϵ).

Intersections and Decision Trees of Halfspaces. We now provide an upper bound for the L2-
sandwiching degree of Decision Trees of halfspaces, which does not merely follow from a bound
on the L∞ approximate degree and, in particular, holds under both the Gaussian distribution and
the Uniform over the hypercube. The following lemma is based on a powerful result from pseu-
dorandomness literature (Theorem 10.4 from [GOWZ10]) which was originally used to provide a
bound for theL1-sandwiching degree of decision trees of halfspaces, but, as we show, also provides
a bound on the L2-sandwiching degree with careful manipulation.

Lemma 19 (L2-sandwiching degree of Intersections and Decision Trees of Halfspaces). Let D
be either the uniform distribution over the hypercube X = {±1}d or the multivariate Gaussian
distribution N (0, Id) over X = Rd. For ℓ ∈ N, let also C be the class of concepts that can be
expressed as an intersection of ℓ halfspaces on X . Then, for any ϵ > 0 the L2 sandwiching degree
of C is at most k = Õ(ℓ

6

ϵ2
). For Decision Trees of halfspaces of size s and depth ℓ, the bound is

k = Õ(s
2ℓ6

ϵ2
).

The above result implies the following corollary.

Corollary 4 (TDS Learner for Intersections and Decision Trees of Halfspaces). Let D be either
the standard Gaussian in Rd or the uniform distribution over the hypercube in d dimensions. Then,
there is an algorithm that runs in time dÕ(ℓ6/ϵ2) and TDS learns intersections of ℓ halfspaces with
respect to D up to error 32λ + O(ϵ). For Decision Trees of halfspaces with size s and depth ℓ the
bound is dÕ(s2ℓ6/ϵ2).

In order to apply the structural result we need from [GOWZ10], we first provide a formal
definition for the notion of hypercontractivity.

Definition 13 (Hypercontractivity). Let D1 be a distribution over R and let T ∈ N, T > 2,
η ∈ (0, 1). We say that D1 is (T, 2, η)-hypercontractive if E[xT] <∞ and for any a ∈ R we have

Ex∼D1 [(a+ ηx)T]1/T ≤ Ex∼D1 [(a+ ηx)2]1/2

134

The following result can be used to show Lemma 19.

Proposition 41 (Modification of Theorem 10.4 from [GOWZ10]). Let r ∈ N, σ ∈ (0, 1), T ∈ N,
η > 0 and t > 4 be parameters and considerD to be a product distribution over X ⊆ Rd such that
each of its independent coordinates is (4, 2, η)-hypercontractive, and (T, 2, 4/t)-hypercontractive.
Suppose that T ≥ Cr log(rt) for some sufficiently large universal constant C > 0 and T is even.
Then, for any function of the form h : X → R, h(x) = 1{w · x ≥ τ}, where w ∈ Rd and τ ∈ R,
there is a polynomial p : X → R such that the following are true.

(i) The degree of p is at most k = poly(log t, 1
η
) · 1

σ
+O(T

r
).

(ii) For any x ∈ X we have p(x) ≥ h(x).

(iii) The expected distance between p and h is bounded by Ex∼D[p(x)−h(x)] ≤ O(σ
1
2+ rt log(rt)

T
).

(iv) The values of p are upper bounded with high probability, i.e., Px∼D[p(x) > 1+ 1
r2
] ≤ 2−T/r.

(v) The L2r(D) norm of p is bounded by ∥p∥L2r(D) ≤ 1 + 2
r2

.

Proof of Lemma 19. Let f ∈ C be an intersection of ℓ halfspaces over X , i.e., f can be written in
the following form

f(x) = 2
ℓ∏

j=1

hj(x)− 1, where hj(x) = 1{wj · x+ τj} for some wj ∈ Rd, τj ∈ R

Note that if f is a Decision Tree of halfspaces of size s and depth ℓ, then f can be written as a
sum of at most s intersections of ℓ halfspaces and it suffices to use accuracy parameter ϵ/s for each
intersection.

Back to the case where f is an intersection of ℓ halfspaces, we will apply Proposition 41 in a
way similar to the proof of Lemma 10.1 in [GOWZ10]. However, our goal here is to show that
Proposition 41 implies the existence of L2 (rather than L1) sandwiching polynomials for f . We
use the following standard fact about the Gaussian and Uniform distributions.

Claim 5. (Hypercontractivity of Gaussian and Uniform marginals, see e.g. [KS88, Wol07, GOWZ10])
If D is either the standard Gaussian N (0, Id) over Rd or the uniform distribution over the hyper-
cube {±1}d, then, for some universal constantC > 0, each of the coordinates ofD is (⌈Ct2⌉, 2, 4

t
)-

hypercontractive for any t > 0 and, in particular, each one is also (4, 2, 1√
3
)-hypercontractive.

We may apply Proposition 41 for each hj with parameters r = 2ℓ, σ = ϵ2

Cℓ4
, t = C ℓ3

ϵ
log(ℓ/ϵ),

η = 1/
√
3 and T = Ct2, for some sufficiently large universal constant C to obtain a polynomial

135

pj of degree k = Õ(ℓ
5

ϵ2
) such that the following are true.

pj(x) ≥ hj(x) for all x ∈ X (3.28)

ϵ1 := ED[pj(x)− hj(x)] = O
(ϵ
ℓ2

)
(3.29)

ϵ2 := P
D

[
pj(x) > 1 +

1

4ℓ2

]
≤ 2−Ω(ℓ

5

ϵ2
log2(ℓ/ϵ)) (3.30)

∥pj∥L4m(D) ≤ 1 +
1

2ℓ2
(3.31)

We will now construct a polynomial pup of degree Õ(ℓ
6

ϵ2
) such that pup(x) ≥ f(x) for all x ∈ X

and also ED[(pup(x) − f(x))2] ≤ ϵ/4. This implies the existence of a corresponding polynomial
pdown with pdown(x) ≤ f(x) for all x ∈ X and ED[(pup(x) − pdown(x))

2] ≤ ϵ via a symmetric
argument. Our proof consists of a hybrid argument similar to the one used in the proof of Lemma
10.1 in [GOWZ10], modified to provide a bound for the L2 error of approximation.

We pick pup = 2p− 1, where p =
∏ℓ

j=1 pj . Let p(0) =
∏ℓ

j=1 hj , p
(i) = (

∏i
j=1 pj)(

∏ℓ
j=i+1 hj)

and p(ℓ) = p. We then have the following.

∥p− h∥L2(D) = ∥p(ℓ) − p(0)∥L2(D) ≤
ℓ∑

i=1

∥p(i) − p(i−1)∥L2(D)

=
ℓ∑

i=1

∥∥∥(i−1∏
j=1

pj

)(ℓ∏
j=i+1

hj

)
(pi − hi)

∥∥∥
L2(D)

≤
ℓ∑

i=1

∥∥∥(∏
j ̸=i

pj

)
(pi − hi)

∥∥∥
L2(D)

(by property (3.28))

For any fixed i ∈ [ℓ] we have∥∥∥(∏
j ̸=i

pj

)
(pi − hi)

∥∥∥2
L2(D)

= ED

[(∏
j ̸=i

p2j(x)
)
(pi(x)− hi(x))2

]
≤ ED

[(∏
j ̸=i

p2j(x)
)
(pi(x)− hi(x))pi(x)

]
(since hi ≥ 0 and pi ≥ hi)

In order to bound the quantity ED[(
∏

j ̸=i p
2
j)(pi − hi)pi], we split the expectation according to the

event E that (
∏

j ̸=i pj)
√
pi < 2. In particular, we have that ED[(

∏
j ̸=i p

2
j)(pi − hi)pi 1{E}] is at

136

most 4ϵ1 by property (3.29) and ED[(
∏

j ̸=i p
2
j)(pi − hi)pi 1{¬E}] is bounded as follows.

ED

[(∏
j ̸=i

p2j(x)
)
(pi(x)− hi(x))pi(x)1

{(∏
j ̸=i

pj(x)
)√

pi(x) ≥ 2
}]
≤

≤ ED

[(∏
j∈[ℓ]

p2j(x)
)
1

{(∏
j ̸=i

pj(x)
)√

pi(x) ≥ 2
}]

(by property (3.28))

We now observe that whenever (
∏

j ̸=i pj(x))
√
pi(x) ≥ 2, there must exist some index j′ such that

pj′(x) > 1 + 1
4ℓ2

and, therefore, we can further bound the above quantity by the following one.

ED

[ℓ∑
j′=1

1

{
pj′(x) > 1 +

1

4ℓ2

}(∏
j∈[ℓ]

p2j(x)
)]

=
ℓ∑

j′=1

ED

[
1

{
pj′(x) > 1 +

1

4ℓ2

}(∏
j∈[ℓ]

p2j(x)
)]

In the above expression we used linearity of expectation. We now apply Hölder’s inequality and
obtain the bound

∑ℓ
j′=1(PD[pj′(x) > 1 + 1

4ℓ2
])

1
2

∏ℓ
j=1

(
ED[p

4ℓ
j (x)]

) 1
2ℓ . Due to properties (3.30)

and (3.31), we finally have the bound ℓ
√
ϵ2 ·
∏ℓ

j=1 ∥pj∥2L4ℓ
≤ ℓ
√
ϵ2(1+

1
2ℓ2

)2ℓ ≤ 3ℓ
√
ϵ2. Therefore,

in total, we have ∥p − h∥2L2(D) ≤ 4ℓ2ϵ1 + 3ℓ3ϵ2 ≤ ϵ, which implies that ∥pup − f∥L2(D) ≤ ϵ and
pup ≥ f .

3.10 Lower Bounds

3.10.1 Lower Bound for Realizable TDS Learning of Monotone Functions

We now prove Theorem 17, which we restate here for convenience.

Theorem 23 (Hardness of TDS Learning Monotone Functions). Let the accuracy parameter ϵ be
at most 0.1 and the success probability parameter δ also be at most 0.1. Then, in the realizable
setting, any TDS learning algorithm for the class of monotone functions over {±1}d with accuracy
parameter ϵ and success probability at least 1− δ requires either 20.04d training samples or 20.04d

testing samples for all sufficiently large values of d.

We will need the following standard fact, see for example Chapter 1 for a proof:

Fact 3. For any distribution D over any domain, let multisets T1 and T2 be sampled as follows:

1. Set T1 is N i.i.d. samples from D.

2. First, multiset S is formed by taking M i.i.d. samples from D. Then, multiset T2 is formed
by taking N i.i.d. uniform elements from S.

Then, the statistical distance between the distributions of T1 and T2 is at most N2

M
.

137

Now, we prove Theorem 17.

Proof of Theorem 17. We fix δ ≤ 0.1 and also fix ϵ ≤ 0.1. Let A be an algorithm that takes
N ≤ 20.04d testing samples and N ≤ 20.04d training samples, and either outputs REJECT, or
(ACCEPT, f̂) for a function f̂ : {±1}d → {±1}. We argue that for, a sufficiently large d, the
algorithm A will fail to be a TDS-learning algorithm for monotone functions over {±1}d.

Let f be some function mapping {±1}d → {±1} and let a multiset S consist of elements in
{±1}d. We define T (f, S) to be a random variable supported on {Yes,No} determined as follows
(informally, ifA is a TDS-learner for monotone functions, then T (f, S) will allow us to distinguish
a uniform distribution over S from the uniform distribution over {±1}d):

1. Let Strain ⊂ {±1}d×{±1} consist of N pairs (x, f(x)), where x are drawn i.i.d. uniformly
from {±1}d.

2. Let Xtest consist of N i.i.d. uniform samples from set S.

3. The algorithm A is run on (Strain, Xtest).

4. If A outputs REJECT, then output T (f, S) =No.

5. If A outputs (ACCEPT, f̂), then

(a) Obtain a new set X2 of 10000 i.i.d. uniform samples from S.

(b) If, on the majority of points x in X2, we have f̂(x) = 1, then output No.

(c) Otherwise, output Yes.

For a multiset S consisting of elements in {±1}d, let fS be the monotone function defined as
follows:

fS(x) :=

{
+1 if there exists z ∈ S : x ⪰ z,

−1 otherwise.

First, we observe that if A is indeed a (ϵ, δ)-TDS learning algorithm for monotone functions over
{±1}d, then:

• T (−1, {±1}d)=Yes with probability at least 2
3

(from here on, by −1 we mean the func-
tion that maps every element in {±1}d into −1). This is true because, by the definition
of a TDS learner, since Strain comes from the uniform distribution over {±1}d, with prob-
ability at least 1 − 2δ = 0.8 the algorithm A will output (ACCEPT, f̂) for some f̂ sat-
isfying Px∼{±1}d [f̂(x) ̸= −1] ≤ ϵ = 0.1. Then, via a standard Hoeffding bound, with
probability at least 0.9 on the majority of elements x in X2 we have f̂(x) = −1 and then
T (−1, {±1}d)=Yes.

• For any multiset S with elements in {±1}d, we have T (fS, S) =No with probability at least
2
3
. Indeed, from the definition of a TDS learning algorithm, we see that, with probability at

least 1− δ = 0.9, the algorithm A will either output

138

– Output reject, in which case T (fS, S) =No.

– Output (ACCEPT, f̂) with Px∼S[f̂(x) ̸= fS(x)] ≤ ϵ = 0.1. But we know that fS takes
values +1 on all elements in S. Therefore, Px∼S[f̂(x) ̸= fS(x)] ≤ 0.1. Then, via a
standard Hoeffding bound, with probability at least 0.9 on the majority of elements x
in X2 we have f̂(x) = +1 and then T (fS, S)=No.

In particular, if S is obtained by picking M = 20.1d i.i.d. elements from {±1}d, we have∣∣∣∣∣∣ P
S∼Unif({±1}d)⊗M

Randomness of T

[T (fS, S) = Yes]− P
Randomness of T

[T (−1, {±1}d) = Yes]

∣∣∣∣∣∣ > 1

3
. (3.32)

The rest of the proof argues, via a hybrid argument, that this is impossible. To be specific, we claim
that for sufficiently large d the following two inequalities must hold∣∣∣∣∣∣ P

S∼Unif({±1}d)⊗M

Randomness of T

[T (−1, S) = Yes]− P
Randomness of T

[T (−1, {±1}d) = Yes]

∣∣∣∣∣∣ ≤ N2

M
. (3.33)

∣∣∣∣∣∣ P
S∼Unif({±1}d)⊗M

Randomness of T

[T (fS, S) = Yes]− P
S∼Unif({±1}d)⊗M

Randomness of T

[T (−1, S) = Yes]

∣∣∣∣∣∣ ≤ 2

(
3

4

)d

MN. (3.34)

We observe that Equation 3.33 follows immediately from Fact 3, because if Equation 3.33 didn’t
hold, then we would be able to achieve advantage greater than M

N2 when distinguishing N i.i.d.
uniform samples from {±1}d from N i.i.d. uniform examples from S.

Now we prove Equation 3.34. Let ST (fS ,S)
train denote the collection of pairs {(x, fS(x))} sampled

in Step 1 of T (fS, S). Analogously, let ST (−1,S)
train denote the collection of pairs (x,−1) in set used

in procedure T (−1, S). In either case, the elements in ST (fS ,S)
train and ST (−1,S)

train are i.i.d. uniformly
random elements in {±1}d. Let ET (−1,S) be the event, over the choice of S and the choice of
S
T (−1,S)
train , that for every (x,−1) ∈ ST (−1,S)

train there is no z in S satisfying x ⪰ z. Analogously, let
ET (fS ,S) be the event, over the choice of S and the choice of ST (fS ,S)

train , that for every (x, fS(x)) ∈
S
T (fS ,S)
train there is no z in S satisfying x ⪰ z. We observe that

P
S∼Unif({±1}d)⊗M

Randomness of T

[
T (fS, S) = Yes

∣∣∣∣ET (fS ,S)

]
= P

S∼Unif({±1}d)⊗M

Randomness of T

[
T (−1, S) = Yes

∣∣∣∣ET (−1,S)

]
(3.35)

which is true because, subject to ET (fS ,S) or ET (−1,S), the function fS takes values of −1 on every
element x in ST (fS ,S)

train and ST (−1,S)
train respectively. We also see that the random variables (S, ST (fS ,S)

train)

and (S, S
T (−1,S)
train) are identically distributed (conditioned on ET (fS ,S) and ET (−1,S) respectively).

139

We also observe that

P
S∼Unif({±1}d)⊗M

Randomness of T

[
ET (fS ,S)

]
= P

S∼Unif({±1}d)⊗M

Randomness of T

[
ET (−1,S)

]
≤
(
3

4

)d

MN, (3.36)

where the equality of the two probabilities follows immediately by definition, and the upper bound
of
(
3
4

)d
MN is true for the following reason. Let z and x be a pair of i.i.d. uniformly random

elements in {±1}d, then P[x ⪰ z] =
(
3
4

)d as each bit of x and z are independent and for each
of the bits we have x ≥ z with probability exactly 3/4. Now, taking a union bound over every
(x,−1) ∈ ST (−1,S)

train and z ∈ S, we obtain the bound in Equation 3.36.
Overall, combining Equation 3.33 with Equation 3.34 and substituting N ≤ 20.04d and M =

20.1d we get∣∣∣∣∣∣ P
S∼Unif({±1}d)⊗M

Randomness of T

[T (fS, S) = Yes]− P
Randomness of T

[T (−1, {±1}d) = Yes]

∣∣∣∣∣∣ ≤
N2

M
+ 2

(
3

4

)d

MN = 2−Ω(d),

which is in contradiction with Equation 3.32 for a sufficiently large value of d. This proves that A
is not a (ϵ, δ)-TDS learning algorithm for monotone functions.

3.10.2 Lower Bound for Realizable TDS Learning of Convex Sets

We now prove Theorem 18 which we restate here for convenience.

Theorem 24 (Hardness of TDS Learning Convex Sets). Let the accuracy parameter ϵ be at most
0.1 and the success probability parameter δ also be at most 0.1. Then, in the realizable setting,
any TDS learning algorithm for the class of indicators of convex sets under the standard Gaussian
distribution on Rd requires either 20.04d training samples or 20.04d testing samples for all sufficiently
large values of d.

We will need the following standard facts about Gaussian distributions:

Fact 4 (Concentration of Gaussian norm, see e.g. Lemma 8.1 in [BM97]). For any η > 0 it is the
case that

P
x∈N (0,Id)

[
d− 2

√
d ln

(
2

η

)
≤ ∥x∥22 ≤ d+ 2

√
d ln

(
2

η

)
+ 2 ln

(
2

η

)]
≥ 1− η

140

Fact 5 (Concentration of Gaussian norm. See e.g. Chapter 1.). For any r > 0 it is the case that

P
x1,x2∈N (0,Id)

[∥∥x1 − x2
∥∥
2
≤ r
]
≤
(
64r2

d

)d/2

Recall that we use Ba to denote the origin-centered closed ball in Rd of radius a. Using conv(·)
to denote the convex hull of a set of points, will state the following geometric observation in
Chapter 1 about convex hulls of a collection of point.

Fact 6. For any a > 0, let {xi}Mi=1 be a collection of points in Bb \ Ba. If for every pair of points
(xi,xj) the ∥xi − xj∥2 is greater than 2

√
b2 − a2, then for every i and j we have

conv(xi,Ba) ∩ conv(xi,Ba) = Ba

and also
conv(x1, · · · ,xM ,Ba) = ∪iconv(xi,Ba).

For the rest of the section we will set

a =

√√√√d− 2

√
d ln

(
1

50

)
b =

√√√√d+ 2

√
d ln

(
1

50

)
+ 2 ln

(
1

50

)
, (3.37)

and from Fact 4 we see that the norm a standard Gaussian vector in Rd falls in interval (a, b) with
probability at least 0.99.

Now, we are ready to prove Theorem 18.

Proof of Theorem 17. We fix δ ≤ 0.1 and also fix ϵ ≤ 0.1. Let A be an algorithm that takes
N ≤ 20.04d testing samples and N ≤ 20.04d training samples, and either outputs REJECT, or
(ACCEPT, f̂) for a function f̂ : Rd → {±1}. We argue that for, a sufficiently large d, the algorithm
A will fail to be a TDS-learning algorithm for convex sets under the Gaussian distribution on Rd.

For a set S we will define gS as the indicator of the convex set conv(S ∩ (Bb \ Ba),Ba). And
in this section we denote the uniform distribution over S as US .

Let f be some function mapping Rd → {±1} and let a set D be a distribution over Rd. We de-
fineH(f,D) to be a random variable supported on {Yes,No} determined as follows (informally, if
A is a TDS-learner for convex sets, thenH(f,D) will allow us to distinguish D from the Gaussian
distribution over Rd):

1. Let Strain ⊂ Rd×{±1} consist ofN pairs (x, f(x)), where x are drawn i.i.d. fromN (0, Id).

2. Let Xtest consist of N i.i.d. uniform samples from D.

3. The algorithm A is run on (Strain, Xtest).

4. If A outputs REJECT, then outputH(f, S) =No.

141

5. If A outputs (ACCEPT, f̂), then

(a) Obtain a new set X2 of 10000 i.i.d. samples from D.

(b) If, on the majority of points x in X2, we have f̂(x) = −1, then output No.

(c) Otherwise, output Yes.

First, we observe that if A is indeed a (ϵ, δ)-TDS learning algorithm for convex sets over Rd

under N (0, Id), then:

• H(g∅,N (0, Id))=Yes with probability at least 2
3

(from here on, by −1 we mean the function
that maps every element in {±1}d into −1). This is true because, by the definition of a TDS
learner, since Strain comes from the uniform distribution over N (0, Id), with probability
at least 1 − 2δ = 0.8 the algorithm A will output (ACCEPT, f̂) for some f̂ satisfying
Px∼Nd

[f̂(x) ̸= g∅(x)] ≤ ϵ = 0.1. Since a was chosen is such manner that Px∈N (0,Id)[x ∈
Ba] < 0.01, and g∅ is the indicator function of Ba, we have Px∈N (0,Id)[g∅(x) ̸= −1] <
0.01. Via a union bound, we see that Px∼N (0,Id)[f̂(x) ̸= −1] ≤ 0.11. Then, via a standard
Hoeffding bound, with probability at least 0.9 on the majority of elements x in X2 we have
f̂(x) = −1 and thenH(g∅,N (0, Id))=Yes.

• For any set S with elements in Rd, we have H(gS,US) =No with probability at least 2
3
.

Indeed, from the definition of a TDS learning algorithm, we see that, with probability at
least 1− δ = 0.9, the algorithm A will either

– Output reject, in which caseH(gS,US) =No.

– Output (ACCEPT, f̂) with Px∼US
[f̂(x) ̸= gS(x)] ≤ ϵ = 0.1. But we know that gS takes

values +1 on all elements in S. Therefore, Px∼US
[f̂(x) ̸= fS(x)] ≤ 0.1. Then, via a

standard Hoeffding bound, with probability at least 0.9 on the majority of elements x
in X2 we have f̂(x) = +1 and thenH(gS,US)=No.

In particular, if S is obtained by picking M = 20.1d i.i.d. elements from N (0, Id), we have∣∣∣∣∣∣ P
S∼N (0,Id)

⊗M

Randomness of H

[H(gS,US) = Yes]− P
Randomness of H

[H(g∅,N (0, Id)) = Yes]

∣∣∣∣∣∣ > 1

3
. (3.38)

The rest of the proof argues, via a hybrid argument, that this is impossible. To be specific, we claim
that for sufficiently large d the following two inequalities must hold∣∣∣∣∣∣ P

S∼N (0,Id)
⊗M

Randomness of H

[H(g∅,US) = Yes]− P
Randomness of H

[H(g∅,N (0, Id)) = Yes]

∣∣∣∣∣∣ ≤ N2

M
. (3.39)

142

∣∣∣∣ P
S∼N (0,Id)

⊗M

Randomness of H

[H(gS,US) = Yes]− P
S∼N (0,Id)

⊗M

Randomness of H

[H(g∅,US) = Yes]
∣∣∣∣

≤
(
64(b2 − a2)

d

)d/2

(M +N)2. (3.40)

We observe that Equation 3.39 follows immediately from Fact 3, because if Equation 3.39 didn’t
hold, then we would be able to achieve advantage greater than M

N2 when distinguishing N i.i.d.
uniform samples from N (0, Id) and N i.i.d. uniform examples from S.

Now we prove Equation 3.40. Let SH(gS ,US)
train denote the collection of pairs {(x, gS(x))} sam-

pled in Step 1 of H(gS,US). Analogously, let SH(g∅,US)
train denote the collection of pairs (x,−1)

in set used in procedure H(g∅,US). In either case, the elements in SH(gS ,US)
train and SH(g∅,US)

train are
i.i.d. elements from N (0, Id). Let EH(gS ,US) be the event, over the choice of S and the choice of
S
H(gS ,US)
train , that for each pair of points x1 and x2 in S ∪ {x : (x, gS(x)) ∈ S

H(gS ,US)
train } we have

∥x1 − x2∥2 > 2
√
b2 − a2. Analogously, let EH(gS ,US) be the event, over the choice of S and the

choice of SH(g∅,US)
train , that for each pair of points x1 and x2 in S ∪ {x : (x, g∅(x)) ∈ SH(g∅,US)

train } we
have ∥x1 − x2∥2 > 2

√
b2 − a2.

We first observe that subject to EH(g∅,US) it is the case that for every {(x, gS(x))} in SH(gS ,US)
train it

is the case that gS = g∅(x). For x ∈ Ba∪(R\Bb) this is immediate because gS as the indicator of the
convex set conv(S ∩ (Bb \ Ba),Ba). It remains to show this only for points (x, gS(x)) ∈ SH(gS ,US)

train

that also satisfy x ∈ Bb \ Ba. Since x is outside Ba, we have g∅(x) = −1 and therefore we would
like to show that gS(x) also equals to −1. This is true because from Fact 6 it is the case that if
EH(g∅,US) takes place, then for every such x we have

conv(x,Ba)∩conv(S∩(Bb\Ba),Ba) = conv(x,Ba)∩

 ⋃
z∈S∩(Bb\Ba)

conv(z ∩ (Bb \ Ba),Ba)

 =

⋃
z∈S∩(Bb\Ba)

(conv(x,Ba) ∩ (conv(z ∩ (Bb \ Ba),Ba))) = Ba,

which in particular implies that x is not in the convex hull conv(S∩(Bb\Ba),Ba) and gS(x) = −1,
concluding the proof of our observation.

We therefore conclude that distributions of (S, SH(gS ,US)
train) and (S, S

H(H(g∅,US)
train) are identically

distributed conditioned on EH(gS ,US) and EH(g∅,US) respectively, which implies that

P
S∼N (0,Id)

⊗M

Randomness of H

[
H(gS,US) = Yes

∣∣∣∣EH(gS ,US)

]
= P

S∼N (0,Id)
⊗M

Randomness of H

[
H(g∅,US) = Yes

∣∣∣∣EH(g∅,US)

]
, (3.41)

143

We also observe that

P
S∼N (0,Id)

⊗M

Randomness of H

[
EH(gS ,US)

]
= P

S∼N (0,Id)
⊗M

Randomness of H

[
EH(g∅,US)

]
≤
(
64(b2 − a2)

d

)d/2

(M +N)2, (3.42)

where the equality of the two probabilities follows immediately by definition, and the upper bound

of
(

64(b2−a2)
d

)d/2
(M + N)2 is true by applying Fact 5 to each relevant pair of points. Therefore,

we obtain the bound in Equation 3.42.
Overall, combining Equation 3.39 with Equation 3.40 and substituting N ≤ 20.04d, M = 20.1d

as well as a =

√
d− 2

√
d ln

(
1
50

)
and b =

√
d+ 2

√
d ln

(
1
50

)
+ 2 ln

(
1
50

)
, we obtain

∣∣∣∣∣∣ P
S∼N (0,Id)

⊗M

Randomness of H

[H(fS, S) = Yes]− P
Randomness of H

[H(g∅,N (0, Id)) = Yes]

∣∣∣∣∣∣ ≤
N2

M
+

(
64(b2 − a2)

d

)d/2

(M +N)2 = 2−0.02d +

(
O

(
1√
d

))d/2

= 2−Ω(d),

which is in contradiction with Equation 3.38 for a sufficiently large value of d. This proves that A
is not a (ϵ, δ)-TDS learning algorithm for convex sets.

3.10.3 Lower Bound for the Agnostic Error Guarantee

We now focus on the agnostic setting and provide an information theoretic lower bound on the
error upon acceptance. Our lower bound is simple and demonstrates that a linear dependence on
the error factor λ (see Equation (3.2)) is unavoidable for TDS learning.

Theorem 25 (Lower Bound for the Error in the Agnostic Setting). Let X be any domain, D a
distribution overX and C a class of concepts that mapX to {±1} that is closed under complement,
i.e., if f ∈ C then −f ∈ C. Then, for any η ∈ (0, 1/2), any ϵ ∈ (0, η/2) and δ ∈ (0, 1/3), no TDS
learning algorithm for C w.r.t. D with finite sample complexity and failure probability δ, can have
an error guarantee better than λ(1− 2η) + ϵ = Ω(λ) + ϵ.

Proof. LetDtrain
XY denote the training distribution andDtest

XY the test distribution, which are both over
X × {±1}. Suppose that for η ∈ (0, 1/2) and ϵ ∈ (0, η/2) there exists an algorithm A, that, upon
acceptance and with probability at least 1 − δ, outputs f̂ ∈ C with err(f̂ ;Dtest

XY) ≤ λ(1 − 2η) + ϵ
(λ = λ(C;Dtrain

XY ,Dtest
XY), see Equation (3.2)). Let C > 0 be a sufficiently large universal constant.

We consider the following algorithm T . Algorithm T uses an oracle toA and accepts or rejects
according to the following criteria.

• If A rejects, then T rejects.

144

• If A accepts and outputs f̂ ∈ C, then T draws C
η2
log(1/δ) examples ST from Dtrain

XY and

rejects if P(x,y)∈ST [f̂(x) ̸= y] > 3η/4. Otherwise, T accepts.

Fix some f ∈ C and let Dtrain
XY be the distribution over X × {±1} whose marginal on X is D

and the labels are generated as y(x) = f(x). Consider the following two cases about Dtest
XY .

Case 1. First, suppose that Dtest
XY has D as marginal on X and y(x) = f(x). Then, A accepts

with probability at least 1 − δ, due to completeness. We have λ = 0 (attained by f) and, hence,
upon acceptance, P(x,y)∼Dtrain

XY
[f̂(x) ̸= y] = P(x,y)∼Dtest

XY
[f̂(x) ̸= y] ≤ ϵ ≤ η/2 with probability at

least 1− δ. By a Hoeffding bound, we then have that T must accept with probability at least 1− δ.
Overall, T accepts with probability at least 1− 3δ > 1/2.

Case 2. Second, suppose that Dtest
XY has D as marginal on X and y(x) = −f(x). Then, we have

that λ = 1 (because for any point x ∈ X , any classifier will either classify x incorrectly under
Dtrain

XY or underDtest
XY). By assumption, we have P(x,y)∼Dtest

XY
[f̂(x) ̸= y] ≤ λ(1− 2η)+ϵ ≤ 1− 2η+ϵ

with probability at least 1 − 2δ (by completeness and soundness). Since the test labels are the
negation of the train labels, we have P(x,y)∼Dtest

XY
[f̂(x) ̸= y] = 1 − P(x,y)∼Dtrain

XY
[f̂(x) ̸= y], and

P(x,y)∼Dtrain
XY

[f̂(x) ̸= y] ≥ 2η − ϵ ≥ η (since ϵ ≤ η/2). By a Hoeffding bound, T will reject with
probability at least 1− 3δ > 1/2.

We have reached a contradiction, because in both cases, the input of T does not depend on the
test labels, and everything else remains the same in both cases. Therefore, T should have the same
behavior in both cases and we conclude that the algorithm A cannot exist as defined.

Remark 4. While the above lower bound demonstrates that the error of a TDS learning algorithm
can be necessarily high in certain settings, we emphasize that the construction corresponds to
a contrived case where the training distribution does not provide enough information about the
test distribution and, therefore, any meaningful notion of learning should be hopeless (see also
[BDU12]).

3.11 Sample Complexity of TDS Learning

In the previous sections, we explored a number of computational aspects of TDS learning,
deriving dimension efficient algorithms for several instantiations of our setting. In this section,
we focus on the statistical aspects of TDS learning. There are several prior works in the literature
of domain adaptation that study the statistical landscape of the problem of learning under shifting
distributions (see, e.g., [BDBCP06, BCK+07, MMR09, BDBC+10, DLLP10]). All of the previous
generalization upper bounds on this problem involve some discrepancy term, which quantifies the
amount of distribution shift, as well as some additional terms that are typically considered small for
reasonable settings. For a concept class C : X → {±1}, considering that the error term λ (see Eq.
(3.2)) is small is a standard assumption in domain adaptation (see, e.g., [BDBCP06, BCK+07]).
Furthermore, one standard measure of discrepancy is defined as follows.

145

Definition 14 (Discrepancy Distance, [BCK+07]). Let X ⊂ Rd and let C be a concept class map-
ping X to {±1}. For distributions D,D′ over X , we define the discrepancy distance discC(D,D′)
as follows.

discC(D,D
′) = sup

f,f ′∈C

∣∣∣P
D
[f(x) ̸= f ′(x)]− P

D′
[f(x) ̸= f ′(x)]

∣∣∣
In particular, [BDBCP06, BCK+07] observe that for any f ∈ C and distributions Dtrain

XY ,Dtest
XY

over X × {±1} the following is true.

err(f ;Dtest
XY) ≤ err(f ;Dtrain

XY) + discC(Dtrain
X ,Dtest

X) + λ(C;Dtrain
XY ,Dtest

XY) (3.43)

The bound of Eq. (3.43) can be translated to a generalization bound for domain adaptation, through
the use Rademacher complexity, whose definition is provided below.

Definition 15 (Rademacher Complexity). Let X ⊆ Rd, let D be a distribution over X and let C
be a concept class mapping X to {±1}. For a set of m samples X = (x(1),x(2), . . . ,x(m)) drawn
independently from D, we define the empirical Rademacher complexity of C w.r.t. X as follows

R̂X(C) =
2

m
E sup

f∈C

m∑
j=1

σjf(x
(j)) , where the expectation is over σ ∼ Unif({±1}d)

Moreover, we define the Rademacher complexity of C at m w.r.t. D as Rm(C;D) = E[R̂X(C)],
where the expectation is over X ∼ D⊗m.

Corollaries 6, 7 in [MMR09], demonstrate that the discrepancy between two distributions is
upper bounded as follows.

Proposition 42 (Bounding the Discrepancy, Corollary 7 in [MMR09]). Consider X ⊆ Rd, a
concept class C ⊆ {X → {±1}d} and distributionsD,D′ overX . Then for any δ > 0,m,m′ ∈ N,
if X,X ′ are independent examples from D,D′, respectively, of sizes m,m′, the following is true.

discC(D,D
′) ≤ discC(X,X

′) + 4R̂X(C) + 4R̂X′(C) + 3 (log(4/δ))1/2
√

1

m
+

1

m′

Combining inequality (3.43) with Proposition 42 and standard generalization bounds for classi-
fication, yields a data-dependent generalization bound for domain adaptation whose only unknown
parameter is λ. In our setting this readily implies the following sample complexity upper bound in
terms of the Rademacher complexity of the concept class C.

Corollary 5 (Sample Complexity upper bound for TDS learning). Let C ⊆ {X → {±1}} be a
hypothesis class and D a distribution over X such that Rm(C;D) ≤ ϵ/10. The algorithm that
runs the Empirical Risk Minimizer on training data and accepts only when both the empirical
discrepancy distance between the training and test unlabelled examples, i.e. discC(Xtrain, Xtest),
and the Rademacher complexity with respect to the test examples, i.e. R̂Xtest(C), are O(ϵ), is an
(ϵ, δ)-TDS learning algorithm for C up to error 2λ+ϵ with sample complexityO(m+ 1

ϵ2
log(1/δ)).

Moreover, if there is a concept in C with zero training error, the same is true up to error λ+ ϵ.

146

We emphasize that, while Corollary 5 readily follows from prior results in the literature of
domain adaptation, it highlights an important distinction between domain adaptation and TDS
learning: A TDS learning algorithm, upon acceptance, achieves error that does not scale with the
discrepancy between the training and test marginal distributions, but only a term that depends on
the quantity λ, which, as we show in Theorem 25, is unavoidable.

3.12 PQ Learning and Distribution-Free TDS Learning

In recent years, there has been a vast amount of work on the problem of learning under shifting
distributions. One of the most relevant models to TDS learning is PQ learning (see [GKKM20,
KK21]), which was defined by [GKKM20]. In this section, we establish a connection between PQ
learning and TDS learning and, in particular, we show that TDS learning can be reduced to PQ
learning, thereby inheriting all of the existing results in the latter framework. Unfortunately, to
the best of our knowledge, most of the positive results on the PQ learning framework make strong
assumptions regarding oracle access to solvers of learning primitives that are typically hard to
solve. Nonetheless, PQ learning is an important theoretical framework for learning under arbitrary
covariate shifts and it is an interesting open question whether our methods can be extended to
provide positive results for the not-easier problem of PQ learning.

In the PQ learning framework, a learner outputs a pair (h,X), where h : X → {±1} is a
classifier and X ⊆ X is a subset of the feature space where one can be confident on the predictions
of h. In particular, the PQ learning model is defined as follows.

Definition 16 (PQ Learning, [GKKM20, KK21]). Let X ⊆ Rd be a set and C ⊆ X → {±1} a
concept class. For ϵ, δ ∈ (0, 1) we say that algorithm A PQ learns C up to error ϵ and probability
of failure δ if for any distributions Dtrain

XY ,Dtest
XY over X × {±1} such that there is some f ∗ ∈ C

so that y = f ∗(x) for any (x, y) drawn from either Dtrain
XY or Dtest

XY , algorithm A, upon receiving
a large enough number of labelled samples from Dtrain

XY and a large enough number of unlabelled
samples from Dtest

X , outputs a pair (h,X) such that h : X → {±1}, X ⊆ X and with probability
at least 1− δ the following is true.

P
x∼Dtrain

X

[x ̸∈ X] ≤ ϵ and P
(x,y)∼Dtest

XY

[h(x) ̸= y and x ∈ X] ≤ ϵ

We note that the above definition of PQ learning is distribution-free, i.e., the guarantees hold
for any distribution and not with respect to a specific target distribution. In Definition 12 for TDS
learning, the completeness criterion is stated with respect to a particular target distribution that is
the same as the training distribution. However, in order to demonstrate a connection between PQ
learning and TDS learning, we now define Distribution-Free TDS learning.

Definition 17 (Distribution-free TDS Learning)). Let X ⊆ Rd and consider a concept class
C ⊆ {X → {±1}}. For ϵ, δ ∈ (0, 1), we say that an algorithm A testably learns C under
distribution shifts up to error ϵ and probability of failure δ if the following is true. For any dis-
tributions Dtrain

XY ,Dtest
XY over X × {±1} such that there is some f ∗ ∈ C such that y = f ∗(x) for

147

any (x, y) drawn from either Dtrain
XY or Dtest

XY , algorithm A, upon receiving a large enough set of
labelled samples Strain from the training distribution Dtrain

XY and a large enough set of unlabelled
samples Xtest from the test distribution Dtest

X , either rejects (Strain, Xtest) or accepts and outputs a
hypothesis h : X → {±1} with the following guarantees.

(a) (Soundness.) With probability at least 1− δ over the samples Strain, Xtest we have:

If A accepts, then the output h satisfies err(h;Dtest
XY) ≤ ϵ.

(b) (Completeness.) Whenever Dtest
X = Dtrain

X , A accepts with probability at least 1− δ over the
samples Strain, Xtest.

We are now ready to prove that distribution-free TDS learning reduces to PQ learning.

Proposition 43 (TDS learning via PQ learning). Algorithm 6 reduces TDS to PQ learning. In par-
ticular, for ϵ, δ ∈ (0, 1), PQ learning algorithmA and a concept class C, Algorithm 6, upon receiv-
ing mP + C

ϵ2
log(1/δ) labelled examples Strain from the training distribution and mQ+ C

ϵ2
log(1/δ)

unlabelled examples Xtest from the test distribution where mP ,mQ are such that A is an (ϵ/4, δ)-
PQ learning algorithm for C given mP training and mQ test examples, (ϵ, δ)-TDS learns C.

Proof. Let C > 0 be a sufficiently large universal constant. For soundness, we observe that upon
acceptance, we have Px∼X2 [x ̸∈ X] and by a Hoeffding bound, since m2 ≥ C

ϵ2
log(1/δ), we have

Px∼Dtest
X

[x ̸∈ X] ≤ 2ϵ/3. By using the fact that err(h;Dtest
XY) ≤ Px∼Dtest

X
[x ∈ X]+Px∼Dtest

X
[x ∈ X]

and the guarantee of the PQ learner we obtain err(h;Dtest
XY) ≤ ϵ, with probability at least 1 − δ.

For completeness, we use the definition of PQ learning and a Hoeffding bound to show that with
probability at least 1− δ, Algorithm 6 accepts whenever Dtest

X = Dtrain
X .

Algorithm 6: TDS learning through PQ learning
Input: Sets Strain, Xtest, parameters ϵ, δ ∈ (0, 1), (ϵ′ = ϵ

4
, δ)-PQ learner A

Set m1 = mQ, m2 =
C
ϵ2
log(1/δ) and split Xtest in X1, X2 with sizes m1,m2.

Run algorithm A on (Strain, X1) and receive output (h,X).
Reject if Px∼X2 [x ̸∈ X] > ϵ/3.
Otherwise, output h and terminate.

The simple reduction we provided in Proposition 43 implies that all of the positive results
on PQ learning transfer to TDS learning. Moreover, note that the reduction does not alter the
training and test distributions between the corresponding TDS and PQ algorithms and, therefore,
would hold even in the distribution specific setting. This is not true, however, about the following
corollary which is based on a reduction from PQ learning to reliable agnostic learning, which does
not preserve the marginal distributions.

Corollary 6 (Combination of Theorem 5 in [KK21] and Proposition 43). If a concept class C is
distribution -free reliably learnable, then it is TDS learnable in the distribution-free setting.

148

We remark that, in fact, (distribution-free) PQ learning is equivalent to (distribution-free) re-
liable learning (see Theorems 5, 6 in [KK21]). For a definition of reliable learning we refer the
reader to [KKM12]. It is known that reliable learning is no harder than agnostic learning and no
easier than PAC learning.

3.13 Amplifying success probability

We will now demonstrate that it is possible to amplify the probability of success of a TDS
learner through repetition. Note that this is not immediate for TDS learning as it is, for example, in
agnostic learning, where one may repeat an agnostic learning algorithm and choose the hypothesis
with the smallest error estimate among the outputs of the independent runs. The main obstacle is
that test labels are not available. Nonetheless, we obtain the following theorem regarding amplify-
ing the probability of success.

Proposition 44 (Amplifying Success Probability). Let C be a hypothesis class, D a distribution
and suppose A is a TDS learner for C with respect to D with error guarantee ψ(λ) + ϵ and
failure probability at most 0.1. Then, there is a TDS learner A′ for C with respect to D with error
guarantee 4ψ(λ) + 4ϵ and failure probability at most δ. In particular, A′ repeats A for T =
O(log

(
1
ϵδ

)
) times and rejects if most of the repetitions reject. If most repetitions accept,A′ outputs

the hypothesis h = maj(h1, . . . , hT/2) (h outputs the majority vote of hi), where h1, . . . , hT/2 are
the outputs of the first T/2 repetitions of A that accepted.

Proof. We split the proof into two parts, one for soundness and one for completeness.

Soundness. For soundness, suppose thatA′ accepts. We denote with P̂ (resp. Ê) the probabilities
(resp. expectations) over the randomness of h1, . . . , hT/2 (which originates to the randomness
of the samples given to A) and with P (resp. E) the probabilities (resp. expectations) over the
randomness of a pair (x, y) drawn from Dtest

XY . In what follows, let η = ψ(λ) + ϵ. We have that
for any i = 1, 2, . . . , T/2, P̂[err(hi,Dtest

XY) ≤ η] ≥ 0.9, by the guarantees of A′. We will show that
P̂[err(h,Dtest

XY) ≤ 4η] ≥ 1− δ for a sufficiently large T = O(log
(

1
ϵδ

)
).

We define Gi to be the event (over the randomness of hi) that hi is ‘good’, i.e., that P[hi(x) ̸=
y] ≤ η. We define Z to be the ‘bad’ region of (x, y), i.e., Z = {(x, y) ∈ X × {±1} : P̂[h1(x) ̸=
y|G1] > 1/3}. Note that Z would be the same even if we substituted (h1,G1) above with an
arbitrary (hi,Gi).

First, we observe that P[h(x) ̸= y] ≤ P[(x, y) ∈ Z] + P[h(x) ̸= y|(x, y) ̸∈ Z].

We now observe that P[(x, y) ∈ Z] = P[P̂[h1 ̸= y|G1] > 1/3] ≤ 3EP̂[h1(x) ̸= y|G1] by
Markov’s inequality. Now, we may swap the expectations to obtain P[(x, y) ∈ Z] ≤ 3Ê[P[h1(x) ̸=
y]|G1] ≤ 3η.

So far, we have shown P[h(x) ̸= y] ≤ 3η + P[h(x) ̸= y|(x, y) ̸∈ Z]. We will bound the
probability over h1, . . . , hT/2 that P[h(x) ̸= y|(x, y) ̸∈ Z] > η. In particular, we have the following

149

due to Markov’s inequality P̂[P[h(x) ̸= y|(x, y) ̸∈ Z] > η] ≤ 1
η
Ê[P[h(x) ̸= y|(x, y) ̸∈ Z]]. Once

more, we may swap the expectations to obtain P̂[P[h(x) ̸= y|(x, y) ̸∈ Z] > η] ≤ 1
η
E[P̂[h(x) ̸=

y]|(x, y) ̸∈ Z].

Moreover, if we fix (x, y) ̸∈ Z, then P̂[hi(x) = y] ≥ P̂[hi(x) = y and Gi] ≥ 2
3
· 9
10
≥ 3/5.

Because P̂[Gi] ≥ 0.9 and P̂[hi(x) = y|Gi] ≥ 2/3 whenever (x, y) ̸∈ Z, by the definition of Z.
Therefore, since h1, . . . , hT/2 are independent, we have that P̂[h(x) ̸= y] ≤ exp(−T/C) for some
sufficiently large universal constant C > 0, for any (x, y) ̸∈ Z.

Therefore, in total, P̂[P[h(x) ̸= y|(x, y) ̸∈ Z] > η] ≤ 1
η
exp(−T/C). We set T = C ln

(
1
ϵδ

)
≥

C ln
(

1
ηδ

)
to obtain P̂[P[h(x) ̸= y|(x, y) ̸∈ Z] > η] ≤ δ and, hence, with probability at least 1− δ

over the randomness of h we overall have P[h(x) ̸= y] ≤ 4η.

Completeness. Completeness follows by a standard Hoeffding bound.

3.14 Auxiliary Propositions

Let N (0, Id) denote the standard multivariate Gaussian distribution over Rd and Unif({±1}d)
denote the uniform distribution over the hypercube {±1}d. For each of these distributions, we
show that the sandwiching polynomials of any binary concept have coefficients that are abso-
lutely bounded, that the empirical moments concentrate around the true ones and that the empirical
squared error of polynomials with bounded degree and coefficients uniformly converges to the true
squared error. These properties are used in order to apply Theorem 16 to obtain TDS learning
algorithms for a number of classes under the Gaussian and Uniform distributions.

3.14.1 Properties of Gaussian Distribution

We prove the following fact about the Gaussian distribution.

Lemma 20 (Properties of the Gaussian Distribution). Let D be the standard Gaussian N (0, Id)
over Rd. Then the following are true.

(i) (Coefficient Bound) Suppose that for some ϵ ∈ (0, 1], k > 0 and some concept class C ⊆
Rd → {±1}, the ϵ-approximate L2 sandwiching degree of C w.r.t. N (0, Id) is at most k.
Then, the coefficients of the sandwiching polynomials for C are bounded by B = O(d)k.

(ii) (Concentration) For any δ ∈ (0, 1),∆ > 0 and k > 0, if X is a set of independent samples
from D with size at least mconc = O(dk)k

∆2·δ then, with probability at least 1 − δ over the
randomness of X , for any α ∈ Nd with ∥α∥1 ≤ k it holds |EX [x

α]− ED[x
α]| ≤ ∆.

(iii) (Generalization) For any ϵ > 0, δ ∈ (0, 1), B > 0, k > 0, and any distribution DXY over
Rd × {±1} whose marginal on Rd is D, if S is a set of independent samples from DXY with

150

size at least mgen = Õ(B
8

ϵ4δ
) · dO(k) then, with probability at least 1− δ over the randomness

of S, for any polynomial p of degree at most k and coefficients that are absolutely bounded
by B it holds |ES[(y − p(x))2]− EDXY [(y − p(x))2]| ≤ ϵ.

Proof. We will prove each part of the Lemma separately.
Part (i). Suppose that pup, pdown are 1-sandwiching polynomials for some concept f ∈ C with
degree at most k. Then, we have the following.

∥pdown∥L2(D) ≤ ∥pup − f∥L2(D) + ∥f∥L2D

≤ ∥pup − pdown∥2 + 1 ≤ 2

Since D is the standard Gaussian distribution, the quantity ∥pdown∥2L2(D) equals to the sum of the
squares of the coefficients of the Hermite expansion of pdown (see e.g. [O’D14]). Therefore, each
Hermite coefficient of pdown is absolutely bounded by 2. Each Hermite polynomial of degree at
most k has coefficients that are absolutely bounded by 2k. Since pdown has degree at most k, each
coefficient of pdown is absolutely bounded by dO(k).
Part (ii). Suppose that α ∈ Nd with ∥α∥1 ≤ k. Then, the worst case regarding moment concentra-
tion is α1 = k. For a sample X from D, we apply Chebyshev’s inequality on the random variable
z = |EX [x

k
1]−ED[x

k
1]| and by bounding E[z2] by ED[x

2k
1] we have that for any ∆ > 0, z ≤ ∆ with

probability at least 1− (Ck)k

|X|∆2 , where the randomness is over the random choice of X and C > 0 is
a sufficiently large universal constant (for bounds on the Gaussian moments, see, e.g., Proposition
2.5.2 in [Ver18]). Since we need the result to hold for all α simultaneously, the result follows by a
union bound.
Part (iii). We defineP to be the class of polynomials over Rd with degree at most k and coefficients
that are absolutely bounded by B. Let T > 0 to be disclosed later and m = |S|. We will first show
that with probability at least 1− δ/2 over the choice of S, we have

EDXY [(y − p(x))2] ≤ ES[(y − p(x))2] + ϵ for all p ∈ P

We aim to apply some standard uniform convergence argument, but in order to do so we first need
to ensure certain boundedness conditions as follows.

EDXY [(y − p(x))2] =EDXY [(y − p(x))2 · 1{∀q ∈ P : |q(x)| ≤ T}]
+ EDXY [(y − p(x))2 · 1{∃q ∈ P : |q(x)| > T}]

where we have EDXY [(y − p(x))2 · 1{∀q ∈ P : |q(x)| ≤ T}] ≤ EDXY [(y − p(x))2 | ∀q ∈
P : |q(x)| ≤ T]. Let D′

XY be the distribution that corresponds to DXY conditioned on the event
{∀q ∈ P : |q(x)| ≤ T} and let S ′ = {(x, y) ∈ S : |q(x)| ≤ T,∀q ∈ P}. By standard arguments
using Rademacher complexity bounds for bounded losses (see, e.g., Theorems 5.5 and 10.3 in
[MRT18]) we have that for some sufficiently large universal constant C > 0, with probability at

151

least 1− δ/4, we have for any p ∈ P

ED′
XY

[(y − p(x))2] ≤ ES′ [(y − p(x))2] + T 4 ·
B +

√
log(1/δ)√
m/C

(3.44)

We now need to link ES′ [(y − p(x))2] to ES[(y − p(x))2]. We have the following.

ES[(y − p(x))2] ≥ (1− P
S
[∃q ∈ P : |q(x)| > T])ES′ [(y − p(x))2]

≥ ES′ [(y − p(x))2]− P
S
[∃q ∈ P : |q(x)| > T] · 2T 2

(since y ∈ {±1} and p ∈ P)

We will upper bound the quantity PS[∃q ∈ P : |q(x)| > T]. We have

P
S
[∃q ∈ P : |q(x)| > T] = P

S

[
∃(qα)∥α∥1≤k ∈ [−B,B]d

k

:
∣∣∣∑

α

qαx
α
∣∣∣ > T

]
≤

∑
α:∥α∥1≤k

P
S

[
|xα| ≥ T

Bdk

]
≤

∑
α:∥α∥1≤k

P
D

[
|xα| ≥ T

Bdk

]
+

dk√
2m

log
(8
δ

)
, w.p. at least 1− δ/4

(3.45)

In the last step, we used a standard Chernoff-Hoeffding bound. We now bound
∑

α:∥α∥1≤k PD[|xα| ≥
T

Bdk
]. Recall that D = N (0, Id) and therefore the worst case for α regarding concentration is the

case α1 = k. We therefore obtain the following via Gaussian concentration.∑
α:∥α∥1≤k

P
D

[
|xα| ≥ T

Bdk

]
≤ dk P

D

[
|xk

1| ≥
T

Bdk

]
≤ dk exp

(
− 1

2
· T

1/k

B1/kd

)
(3.46)

It remains to bound the term EDXY [(y − p(x))2 · 1{∃q ∈ P : |q(x)| > T}]. By applying the
Cauchy-Schwarz inequality, it is sufficient to bound

√
EDXY [(y − p(x))4]·

√
PD[∃q ∈ P : |q(x)| > T].

For the second term, we use Equation (3.46). For the first term, we have the following for some
sufficiently large constant C > 0.

152

ED[(y − p(x))4] ≤ 8 + 8ED[p
4(x)]

≤ 8 +B4d4k
∑

∥α∥1≤4k

∏
i:αi>0

ED[x
αi
i] (since deg(p4) ≤ 4k and |(p4)α| ≤ B4d4k)

≤ B4d8k(Ck)2k (since D = N (0, Id), see Proposition 2.5.2 in [Ver18])

Using the above inequality along with (3.44), (3.45) and (3.46) we obtain that EDXY [(y −
p(x))2] − ES[(y − p(x))2] is upper bounded by the following quantity for some sufficiently large
universal constant C > 0

T 4 ·
B +

√
log(1/δ)√
m/C

+ 2T 2dk exp

(
−1

2
·
(

T

Bdk

)1/k
)
+

+ 2T 2 dk√
2m

log
(10
δ

)
+B2d4k(Ck)kdk/2 exp

(
−1

4
·
(

T

Bdk

)1/k
)
,

which is at most ϵ when we choose m,T as follows for some universal constant C > 0 (possibly
larger than the previously defined constants for which we used the same letter) for the choice T =
CB(4d)kk log

(
Bdk
ϵ

)
and m = C

ϵ2
(B2 + log

(
1
δ

)
)B8(4d)8kk8 log

(
Bdk
ϵ

)
= Õ(B

ϵ2
) ·O(d)8k · log(1/δ).

In order to bound the symmetric difference, we also need to bound the quantity ES[(y −
p(x))2] − EDXY [(y − p(x))2], which we may do following a similar reasoning, but requiring, at
times, bounds on quantities that correspond to empirical expectations (instead of expectations over
the population distribution). In particular, we will require a bound on ES[(y − p(x))4], which can
be reduced to bounding ES[p

4(x)], for which we may use part (ii), demanding m ≥ dO(k)/δ to
obtain

ES[p
4(x)] ≤ 2B4d4k(Ck)k

Overall, this step will introduce the additional requirement thatm ≥ B8

ϵ4δ
d16k(Ck)4k log2(1

δ
). There-

fore, overall, for m ≥ mgen = Õ(B
8

ϵ2δ
) · dO(k) · log2(1

δ
), we have the desired result.

3.14.2 Properties of Uniform Distribution

We prove the following fact about the uniform distribution.

Lemma 21 (Properties of the Uniform Distribution). Let D be the uniform distribution over the
hypercube Unif({±1}d) and C > 0 some sufficiently large constant. Then the following are true.

(i) (Coefficient Bound) Suppose that for some ϵ ∈ (0, 1], k > 0 and some concept class C ⊆
Rd → {±1}, the ϵ-approximate L2 sandwiching degree of C w.r.t. D is at most k. Then, the
coefficients of the sandwiching polynomials for C are absolutely bounded by B = 2.

153

(ii) (Concentration) For any δ ∈ (0, 1),∆ > 0 and k > 0, if X is a set of independent samples
from D with size at least mconc = Ck

∆2 log
(
d
δ

)
then, with probability at least 1 − δ over the

randomness of X , for any α ∈ Nd with ∥α∥1 ≤ k it holds |EX [x
α]− ED[x

α]| ≤ ∆.

(iii) (Generalization) For any ϵ > 0, δ ∈ (0, 1), B > 0, k > 0, and any distribution DXY over
Rd × {±1} whose marginal on Rd is D, if S is a set of independent samples from DXY with
size at least mgen = Õ(1

ϵ2
) · BO(1) · dO(k) · log

(
1
δ

)
then, with probability at least 1 − δ over

the randomness of S, we have that for any polynomial p of degree at most k and coefficients
that are absolutely bounded by B it holds |ES[(y − p(x))2]− EDXY [(y − p(x))2]| ≤ ϵ.

Proof. We will prove each part of the Lemma separately.
Part (i). Suppose that pup, pdown are 1-sandwiching polynomials for some concept f ∈ C with
degree at most k. Then, we have the following.

∥pdown∥L2(D) ≤ ∥pup − f∥L2(D) + ∥f∥L2D

≤ ∥pup − pdown∥2 + 1 ≤ 2

Since D is the uniform distribution, the quantity ∥pdown∥2L2(D) equals to the sum of the squares
of the coefficients of pdown (see e.g. [O’D14]). Therefore, each coefficient of pdown is absolutely
bounded by 2.
Part (ii). Suppose that α ∈ {0, 1}d with ∥α∥1 ≤ k. For a sample X from D, we apply Hoeffding’s
inequality on the random variable z = |EX [x

α] − ED[x
α]| and by observing that xα ∈ {±1} we

have that the probability that z > ∆ is at most 2 exp(−|X|∆2/10). We obtain the desired result
by a union bound.
Part (iii). We define P to be the class of polynomials over {±1}d with degree at most k and
coefficients that are absolutely bounded by B. Let T > 0 to be disclosed later and m = |S|. We
will show that with probability at least 1− δ over the choice of S, we have

|EDXY [(y − p(x))2]− ES[(y − p(x))2]| ≤ ϵ for all p ∈ P

We apply some standard uniform convergence argument, by observing that (y − p(x))2 ≤ 2 +
2B2dk. In particular by standard arguments using Rademacher complexity bounds for bounded
losses (see, e.g., Theorems 5.5 and 10.3 in [MRT18]) we obtain the desired result.

154

Part II

Closing Computational-to-Statistical Gaps
via Sublinear-Time Correction

155

Chapter 4

Properly learning monotone functions via
local correction

4.1 Chapter Overview.

Proper learning of monotone functions. Consider the proper learning problem for monotone
functions:

Given i.i.d uniform labeled examples from an unknown monotone g : {0, 1}d → {0, 1}, output a
monotone, ϵ-accurate predictor ĝ : {0, 1}d → {0, 1}— that is, a circuit computing a monotone

function that agrees with g on at least 1− ϵ fraction of the domain.

For over 25 years there has been a large statistical-to-computational gap in our understanding of
this problem. A 2Õ(

√
d/ϵ)-time improper learning algorithm — that is, an algorithm that outputs

a predictor f that is accurate but not guaranteed to be monotone — is given in [BT96]. One
could use the output of this algorithm to obtain a monotone ĝ by computing f on every element of
{0, 1}d and solving a linear program to obtain the closest monotone function to f . Although this
gives a 2Õ(

√
d/ϵ)-sample algorithm, the run-time is 2Ω(d). No proper learning algorithm with faster

run-time (i.e. 2o(d)) was known, even given query access to g.
Through a new connection with local computation algorithms, we close this gap by giving a

2Õ(
√
d/ϵ)-time algorithm for this problem. Note that the running time essentially matches that of

the aforementioned improper learning algorithm of [BT96]. Moreover, our algorithm is essentially
optimal, due to the 2Ω̃(

√
d) query lower bound of [BCO+15]. Furthermore, our algorithm is robust

to adversarial noise in the labels. Specifically, in the agnostic learning model of Kearns, Schapire,
and Sellie [KSS94b], our algorithm can handle a noise rate of Ω(ϵ).

Monotonicity testing. The question of testing monotonicity of an unknown Boolean function
over {0, 1}d (given query access) has received a large amount of attention [GGL+00, DGL+99,
CS13a, CST14, CDST15, KMS15, BB21, CWX17]. However, the algorithms in this line of work

156

possess the drawback of having a large tolerance ratio1, i.e. they will reject some functions that
are extremely close to monotone. The more recent work of [PRW22] gives a tester with tolerance
ratio of Õ(

√
d), and this is the best tolerance ratio known2 for a 2o(d)-run-time algorithm.

As a simple corollary of our proper learning algorithm, one can already achieve constant toler-
ance ratio for monotonicity testing with 2Õ(

√
d/ϵ) run-time via a well-known connection between

learning and testing [GGR98]. (We emphasize that, to draw this corollary, it is critical that the
learning algorithm is proper and robust to noise in labels.) Even more, building more directly on
our technical ideas, we present a constant-tolerance monotonicity tester with exponentially bet-

ter dependence on ϵ of 2Õ
(√

d log 1
ϵ

)
. This approach also yields a tolerant monotonicity tester for

functions over general posets, which we describe in detail in Corollary 9. By a standard reduction
[PRR04], this also gives an approximator for distance to monotonicity (within a constant multi-
plicative error plus an ϵN additive error) in functions over general posets as well.

4.1.1 Monotonicity correction via sorting on partially ordered sets.

The poset-sorting problem. One of the core ideas in this chapter is to create a new bridge
between our learning task and recent exciting developments on parallelizing greedy algorithms
[Gha15, GU19, Gha22]. These developments accomplish speedups for classic graph problems in
the setting of local and distributed computing. They build on a large body of work in local compu-
tation algorithms and distributed graph algorithms: some examples include [RTVX11a, ARVX12a,
LRY17, GHL+15, RV16, EMR14, CFG+19, ELMR21, PRVY19, AL21, BGR21, GR21]. In order
to accomplish this, we introduce the problem of poset sorting, that is, sorting binary values on a
partially ordered set (poset), which we believe is of independent interest:

Let P be a poset of N elements with longest chain length at most h and such that every element
has at most ∆ predecessors or successors. Given a binary labeling f of elements of P , output a
new binary labeling fmon that (i) is monotone with respect to the partial order in P (ii) can be

obtained from f by a sequence of swaps of monotonicity-violating label pairs.

Clearly, there is a greedy algorithm for this task that keeps swapping monotonicity-violating pairs
of labels until there are none left. The challenge is to do this in a distributed fashion. Among the
many distributed and local computation models, the one that turns out relevant to us is the local
computation algorithm (LCA) model, defined formally in Section 4.2. In brief, to be an LCA, an
algorithm should be local in the sense that it should not need to read the entire assignment of labels
to vertices in order to determine which label will end up at some particular vertex x. It should
suffice to read only the labels of vertices that lie in a restricted neighborhood of x — ideally not
much more than the set of vertices one would need to read in order to determine whether x’s own
label violates monotonicity. We explain the algorithm itself in Subsection 4.1.2.

1A tester for monotonicity distinguishes a monotone function from a function that is ϵ-far from monotone. In this
chapter, we use tolerance ratio α to mean that the tester will accept a function ϵ/α-close to monotone.

2Note that Theorem 1.8 of [CGG+17] gives a 2o(d)-query algorithm (no run-time bound is claimed). The run-time
is still 2Ω(d) due to step 8 of their Algorithm 2 on page 31.

157

Proper learning via local correction. Why is an algorithm for sorting on a poset P relevant
to proper learning? Suppose we obtained an improper predictor f via the algorithm of [BT96], in
the form of a small circuit computing f . Then, let monotone fmon be obtained from f by flipping a
sequence of monotonicity-violating labels. It is not hard to argue that since f is O(ϵ)-close to the
monotone g we are trying to learn, then so is any fmon obtained in this manner (see Proposition 45
for more details). What the LCA allows us to do is to transform the circuit computing f into a
small circuit computing such fmon. The reason is that to evaluate fmon at a given element x the
LCA evaluates f on only a small number of points and has an appropriately fast run-time. This
allows us to augment the circuit for f with a circuit that executes this sorting algorithm, and as a
result obtain a small circuit for fmon.

In other words, an LCA for sorting on a poset is a local corrector for monotonicity: an algorithm
that takes some input x, makes queries to a black-box function f , and outputs fmon(x) where fmon

is a monotone function that is close to f in Hamming distance, if such a function exists. Examples
of local correctors for various function properties can be found in . A local corrector, combined
with any improper hypothesis, yields a proper hypothesis. The efficiency of the LCA determines
how quickly the proper hypothesis can be evaluated.

4.1.2 Our LCA for sorting on a poset.

When the longest chain length h is 1, then the poset-sorting problem is equivalent to the clas-
sical problem of finding a maximal matching on a bipartite graph with N vertices and maximum
degree at most ∆. We note that a recent LCA by Ghaffari [Gha22] handles this problem using a
run-time of only poly(∆, log(N/δ)).

For larger values of h, a naive approach would be to execute a sequence of phases, in each
of which a maximal matching between monotonicity-violating labels is produced and the labels
that are matched with each other are swapped. One can show that O(h) such phases suffice and
sometimes necessary if the matchings are arbitrary. If the algorithm by Ghaffari [Gha22] is used
to implement each of the phases, this yields a run-time of (∆ log(N/δ))Θ(h). For properly learning
monotone functions over the Boolean cube, the parameters we are primarily interested in are h =
Θ(
√
d), ∆ = 2Θ̃(

√
d) and N = Θ(2d). (A slight subtlety in our argument is that we need to work

over truncated hypercube, i.e. handle separately O(ϵ) fraction of the elements with too high or too
low Hamming weight, which is a standard technique). The naive approach then gives us a run-time
of (∆ log(N/δ))Θ(h) = 2Ω(d), which is too slow for our purposes.

We beat the naive approach by enforcing that the maximal matchings at each step only include
pairs of vertices that are sufficiently far away in the graph. We show that after each matching step,
the greatest distance between pairs that violate monotonicity reduces by a factor of 2. This allows
us to reduce the exponent from h to log h, which is sufficiently fast to yield an essentially optimal
proper learning algorithm for monotone functions.

158

4.1.3 Other related work

The problem of locally correcting monotonicity has been studied in [ACSL08, ACSL07, SS10a,
BGJ+12, AJMR14] in various parameter settings. The work of [ACSL08] introduces the problem
of online property reconstruction and gives an algorithm for correcting monotonicity for real-
valued functions over the discrete number line. The work of [PRR04] gives a tolerant tester in
the same setting. The work of [SS10a] introduces the framework of local property reconstruction,
which is the same framework our approach uses (i.e. local correction by memoryless LCA). They
give a local corrector for functions over the hypergrid [d]d, with large dependence on the dimension
d but small dependence on d. Lower bounds for monotonicity correction in other error regimes are
given in [BGJ+12, AJMR14]. The problem of approximating the distance to monotonicity, which
is strongly related to tolerant testing, has been studied in [PRW22, ACSL07, PRR04].

A proper learning algorithm for a function class that generalizes monotone functions is given
in [CGG+17]. Proper learning of restricted classes of monotone functions has been studied in
[JLSW11, Ang88, YBC13, JLSW11, BLQT22]. The question of weak learning of monotone func-
tions has also received attention [KV89, BT96, BBL98, AM06, OW09]. The latter line of work
investigates proper learning algorithms that have very fast run-time at the cost of having accuracy
of only 1

2
+ 1

poly(d)
.

In addition to the Boolean cube, testing monotonicity has also been studied on hypergrids, see
for example [CS13b], [BRY14b] [CS13c], [BCS18], [BCS20]. Also see [CS19] for monotonicity
testing of functions with bounded influence.

4.1.4 Organization of this chapter

In Section 4.2.3 we define the LCA model and state the maximal matching result of [Gha22].
In Section 4.3 we state and prove the main proper learning and testing results as consequences
of our local poset sorting algorithm. In Section 4.4 we present pseudocode for the local sorting
algorithm and analyze its correctness and complexity.

4.2 Preliminaries

4.2.1 Notation (posets and distances)

Let x and y be elements of a poset P .3 We use ⪯ to denote the ordering relation on P . We say
x ≺ y (“x is a predecessor of y”) if x ⪯ y and x ̸= y. Also, we say x ⪰ y if y ⪯ x, and x ≻ y
(“x is a successor of y”) if y ≺ x. We say x and y are incomparable if neither x ≺ y nor x ≻ y
holds. We say that x is an immediate predecessor of y if x ≺ y and there is no z in P for which
x ≺ z ≺ y. The notion of an immediate successor is defined analogously.

The graph of a poset P (a.k.a. Hasse diagram of P) is a directed graph, in which elements of
P are the vertices, and there is an edge from x to y whenever x is an immediate predecessor of y.

3In this chapter all posets are assumed to be finite.

159

Clearly, the graph of any poset is a DAG. Additionally, it is immediate that the poset itself is un-
ambiguously determined by its graph, and we will refer to the poset and its graph interchangeably.

Definition 18 (Graph distance and height). We will write dist(x, y) to denote the length of the
longest directed path4 between x and y in the Hasse diagram of P . The height of a poset P is the
length of the longest directed path between any two elements in P .

Definition 19 (Function distance). For a pair of functions f1, f2 : P → {0, 1}, the distance
∥f1 − f2∥ is the fraction of elements x in P on which f1(x) ̸= f2(x).

Definition 20 (Distance to monotonicity). For a function f : P → {0, 1}, the distance to mono-
tonicity is defined as minmonotone Boolean f ′ (∥f − f ′∥).

4.2.2 Agnostic learning setting

Now, we formally describe the setting of agnostic learning under the uniform distribution. The
learning algorithm is given i.i.d. example-label pairs from some distribution over {0, 1}d×{0, 1},
where the marginal distribution over examples is uniform. The generalization error (which we
also refer to simply as error) of a predictor is the probability it misclassifies a fresh example-label
pair. The goal of agnostic learning is to produce a predictor ĝ with good generalization error.
Guarantees are produced in terms of the lowest generalization error among all hypotheses in the
function class (in our case monotone functions), which we denote as opt.

4.2.3 The LCA model

The Local Computation Algorithm (LCA) model captures the ability to provide query access
to parts of an output in sublinear time. In this chapter, we use the LCA model for the problems
of maximal matching and poset sorting. An LCA is given access to a random bit-string and to
the input: for example, in the case of maximal matching, this input is the adjacency list of the
graph. Upon receiving an edge query e in G, the LCA should respond “yes” or “no.” Responses
to different edges must be consistent with a single legal maximal matching. Similarly, for poset
sorting on poset P , a query to the LCA is any element x ∈ P , and the LCA, which is provided
with access to function f : P → {0, 1}, must respond with fmon(x) so that the function fmon is
monotone. Responses to different inputs must be consistent with a single legal sorting of f . In
both cases, the LCA’s answers may depend on a random bit-string5 that persists between queries,
but otherwise, responses must be6 memoryless – i.e., they cannot depend on previous queries to or
responses from the LCA.

4If x and y are incomparable, then dist(x, y) is undefined.
5In all cases we consider, the random bit-string is short enough for the LCA to read as a whole (in contrast, in some

work exponentially long bit-strings are considered).
6Sometimes LCAs are considered that are not memoryless, but in this chapter whenever we refer to an LCA, we

imply it is memoryless.

160

In terms of performance, we want the following quantities to be as small as possible (i) the
query complexity, i.e. the number of probes to the input the LCA makes to respond to a single
query, (ii) the run-time the LCA needs to respond to a query, (iii) the length of the random bit-
string used by the LCA, (iv) the probability over the random bit-string that the LCA fails to satisfy
the problem specifications.

We will use a recent powerful result7 of Ghaffari [Gha22], which gives an efficient algorithm
for answering membership queries to a maximal independent set. (We emphasize that maximal
independent set is defined to be an independent set that cannot be made into a larger independent
set by adding an extra vertex, and maximal matching is defined analogously.) We note that in
an earlier version of this Chapter (which was written before [Gha22] was available) we used the
theorem of Ghaffari and Uitto [GU19] for this purpose.

Theorem 26 ([Gha22]). There is an LCA that takes all-neighbor8 access to a graph G with N
vertices and largest degree at most ∆, and gives membership access to a maximal independent
set on the graph. The query complexity and the run-time of the LCA are poly(∆, log(N/δ)), the
length of the random bit-string is also poly(∆, log(N/δ)) and the failure probability is at most δ.

Corollary 7. There is an LCA that takes all-neighbor access to a graph G, with N vertices and
largest degree at most ∆, and gives membership access to a maximal matching on the graph. The
query complexity and the run-time of the LCA is poly(∆, log(N/δ)), the length of the random
bit-string is also poly(∆, log(N/δ)) and the failure probability is at most δ.

Proof. This reduction is standard; see Section 4.5.1 for details.

4.2.4 Boolean hypercube.

Definition 21. The d-dimensional Boolean hypercube is the set {0, 1}d. For x, y ∈ {0, 1}d, we say
x ⪯ y if for all i ∈ {1, · · · , d} one has xi ≤ yi. It is immediate that {0, 1}d is a poset with 2d

elements.
We also define the truncated hypercube

Hd
ϵ :=

{
x ∈ {0, 1}d :

∣∣∣∣∣∑
i

xi −
d

2

∣∣∣∣∣ ≤
√
d

2
log

2

ϵ

}
,

7We need to comment on some superficial differences between Theorem 26 and the main theorem of [Gha22],
which does not mention run-time and bit-string length explicitly and also has δ = poly

(
1
N

)
. The following obser-

vations are not novel in any way, and some of them are alluded to in [GU19, Gha22], but we explain them here for
completeness. The bound on run-time follows by direct inspection of their algorithm. The length of the bit-string can
be reduced to poly(∆, log(N/δ)) via the standard method [ARVX12a, LRY17] of replacing i.i.d. random bits with
k-wise independent random bits for k large enough (k = poly(∆, log(N/δ)) suffices, as number of those i.i.d. random
bits accessed per query is poly(∆, log(N/δ))). Although, the failure probability bound δ in the original theorem of
[Gha22] is set to be poly

(
1
N

)
, it can be boosted to arbitrary δ by adding extra disconnected vertices to our graph until

this value reaches δ for the new number of vertices N ′. Query access to this new graph can be simulated via query
access to the original graph with inconsequential overhead. Overall, this costs one an extra polylog(1/δ) factor in
query complexity and run-time.

8I.e. when queried a vertex v, the oracle returns all the neighbors of v.

161

Via Hoeffding’s bound, we have that the fraction of elements in {0, 1}d that are not also in Hϵ
n is

at most 2 exp
(
−2t2

d

)
= ϵ.

Known results about learning monotone functions over Boolean hypercube.

Theorem 27 (Learnability of monotone functions [BT96]). There is an algorithm that, for any
monotone function g : {0, 1}d → {0, 1}, given i.i.d. example-label pairs (xi, g(xi)), with xi
uniform in {0, 1}d, returns a circuit computing a predictor ĝ, such that ∥g − ĝ∥ ≤ ϵ. The algorithm

uses dO
(√

d
ϵ

)
log
(
1
δ

)
samples and run-time, where δ is the failure probability bound.

The theorem below follows via low-degree concentration result of [BT96], Remark 4 on page
6 of [KKMS08] a refinement by [FKV17] and standard failure probability reduction via repetition:

Theorem 28 (Agnostic learnability of monotone functions). In the agnostic setting with examples
distributed uniformly on {0, 1}d, there is an algorithm that returns a circuit with generalization
error at most opt + ϵ, where opt is the error of the best monotone function. The algorithm uses

d
Õ
(√

d
ϵ

)
log
(
1
δ

)
samples and run-time, where δ is the failure probability bound.

4.3 Main result and consequences

We first present the formal statement for our LCA for the poset sorting problem, from which
every other result in this section is derived. The algorithm and analysis are presented in Section 4.4.

Theorem 29. Let P be a poset of N elements and height h, such that each element in P has at
most ∆ predecessors or successors. Suppose we are given query access to the graph of P , i.e.
for any x ∈ P we can obtain the immediate predecessors or successors of x. Also, suppose we
are given query access to some Boolean function f over P . Then, there is an LCA that solves
the poset-sorting problem for f over P : in other words, it provides query access to a monotone
function fmon : P → {0, 1} that can be obtained from f by a sequence of swaps of monotonicity-
violating label pairs. The LCA has query complexity and run-time of

(
∆ log

(
N
δ

))O(log h), and it
uses a random bit-string of length poly(∆ log N

δ
). The failure probability of the LCA is at most δ.

Remark 5. In the setting of Theorem 29, suppose each element of P has at most d immediate
predecessors or successors, and furthermore, that P is graded (all paths between u and v for any
u, v have the same length). Then query complexity and the run-time of our LCA is also bounded
by dO(h)(log(N/δ))log h. The number of random bits used is at most dO(h) polylog(N/δ). In par-
ticular, when P is the truncated hypercube Hd

ϵ and δ = 2−10n, the query and time complexity are

d
O
(√

d log 1
ϵ

)
.

The proof of Remark 5 is given in Section 4.5.4.

162

Proposition 45 (Local correction). In the setting of the previous problem, the distance between
f and fmon is at most twice the distance of f to monotonicity. Furthermore, the following extra
property holds: for any monotone q : P → {0, 1} we have ∥fmon − q∥ ≤ ∥f − q∥.

Proof. We first show the extra property. Recall that fmon can be obtained from f via a sequence
of swaps of monotonicity-violating labels. Since q is monotone, as a result of every single of this
swaps the distance to q will either decrease or stay the same. Overall across all the swaps, this
means that ∥fmon − q∥ ≤ ∥f − q∥.

Taking q to be the closest monotone function to f and using the triangle inequality, we see that
the distance between f and fmon is at most twice the distance of f to monotonicity.

The two corollaries about tolerant testing of monotone functions follow from our theorem
above. We note that the success probability of 2/3 can be improved via repetition to 1 − δ at
the cost of log

(
1
δ

)
multiplicative factor in run-time and query complexity. We also note that the

inverse tolerance ratio, given as 0.49, can be improved to any absolute constant less than 0.5.

Corollary 8 (Tolerant testing for the Boolean cube). Suppose we are given query access to an

unknown Boolean function f . Then, there is an algorithm that uses dO
(√

d log 1
ϵ

)
queries and run-

time, and distinguishes whether the function f is 0.49ϵ-close or ϵ-far from monotone. The failure
probability is at most 2/3.

Proof. We use the truncated hypercube Hd
0.005ϵ as our poset when using Theorem 29 (also using

the refined run-time of Remark 5). This allows us to gain query access to a monotone fmon on
Hd

0.005ϵ. Extend fmon to all of {0, 1}d by setting it to 1 above the upper truncation threshold and to
0 below the lower threshold. Clearly, fmon is now also monotone on all of {0, 1}d.

We sample i.i.d. uniformly random elements of {0, 1}d, evaluate both f and fmon on each these
elements and obtain an estimate of ∥f − fmon∥ up to error 0.005ϵ. If f is ϵ-far from monotone, then
the distance ∥f − fmon∥ is also at least ϵ, so the estimate will be at least 0.995ϵ. If f is 0.49ϵ-close
to monotone, then there is some monotone function over Hd

0.005ϵ with which f disagrees on at most
0.49ϵ ·2d elements ofHd

0.005ϵ. The guarantee of Theorem 29 (via Proposition 45) tells us that then f
and fmon disagree on at most 0.98ϵ · 2d elements of Hd

0.005ϵ. Since there are only at most 0.005ϵ · 2d
elements in {0, 1}d that are not in Hd

0.005ϵ, we see that ∥f − fmon∥ is at most 0.985ϵ. Therefore, the
estimate will be at most 0.99ϵ. Overall, checking if the estimate is greater than 0.992ϵ allows us to
distinguish whether f is ϵ-far from monotone or 0.49ϵ-close to monotone.

For the estimation to succeed, we need to evaluate f and fmon on O
(

1
ϵ2

)
i.i.d. random elements

of {0, 1}d. For the LCA of fmon we can set the overall success probability parameter to be 0.1. A
Chernoff bound and union bound argument then shows that overall success probability is at least

2/3. For Hd
0.005ϵ our parameters are h = O

(√
d log 1

ϵ

)
, N = O(2d) and each element of the poset

has at most d immediate predecessors or successors. Overall, the run-time given by Remark 5 is

d
O
(√

d log 1
ϵ

)
.

163

Corollary 9 (Tolerant testing for general posets). Suppose we are in the setting of Theorem 29,
and we also have access to an oracle giving us i.i.d. uniform elements in P . Then, there is an
algorithm that uses
∆O(log h log log∆) (log (N))O(log h) 1

ϵ2
queries and run-time, and distinguishes whether the function f

is 0.49ϵ-close or ϵ-far from monotone. The failure probability is at most 2/3.

Proof. The proof is similar to the proof of Corollary 8, and is given in Section 4.5.2.

Theorem 30 (Proper learnability of monotone functions). There is an algorithm that, for any
monotone function g : {0, 1}d → {0, 1}, given i.i.d. example-label pairs (xi, g(xi)), with xi
uniform in {0, 1}d, returns a circuit computing a monotone function ĝ, such that ∥g − ĝ∥ ≤ ϵ.

The algorithm uses dO
(√

d
ϵ

)
samples and run-time and fails with probability at most 1/2d.

Proof. The proper learner does the following:

1. Use the improper learner in Theorem 27 with error parameter ϵ
10

and failure probability
bound 1/2d+1. This gives a circuit computing a function f over {0, 1}d.

2. Obtain a circuit computing a function fmon : Hd
ϵ/10 → {0, 1} as follows. The circuit is

computed via running the LCA from Theorem 29 with accuracy parameter equal to ϵ
10

and
failure probability bound equal to 1/2d+1, and with the oracle calls to a function replaced
with an evaluation of the circuit f , restricted to Hd

ϵ/10. The random bit-string used by the
LCA is hard-coded into the circuit for h, so that the resulting circuit is deterministic.

3. Augment the circuit computing fmon in order to extend this function into the whole of {0, 1}d

as follows. If |x| > d
2
+
√

d
2
log 20

ϵ
then fmon(x) = 1, and if |x| < d

2
−
√

d
2
log 20

ϵ
then

fmon(x) = 0.

4. Output the circuit computing fmon.

With probability at least 1/2d both of the algorithms we invoke succeed, which we will assume
henceforth.

Let us discuss the run-time. Step 1 runs in time dO
(√

d
ϵ

)
and the circuit for g can therefore

only have size at most dO
(√

d
ϵ

)
. For step 2, first observe that we have

∣∣∣Hd
ϵ/10

∣∣∣ ≤ 2d, Hd
ϵ/10 has

height 2
√

d
2
log 20

ϵ
and each element in Hd

ϵ/10 can have only at most d immediate predecessors and
successors. Therefore, the LCA from Theorem 29 (refined via Remark 5) in this setting has run-
time, query complexity and bit-string length of dO(

√
d log(1/ϵ)). Since the circuit for f itself has size

d
O
(√

d
ϵ

)
, the overall run-time of the learning algorithm and the size of circuit computing fmon is

also 2
O
(√

d
ϵ

)
.

Finally, we argue correctness. Correctness of the LCA in Theorem 29 implies that fmon is
monotone over Hd

ϵ/10 and we see that the extension of this function to {0, 1}d in step 3 keeps it
monotone.

164

Now, let g be the function we are trying to learn. Since we are in the realizable setting, g is
monotone. Theorem 27 tells us that f and g disagree on at most ϵ

10
2d elements. This, together with

Theorem 29, Remark 45 and the fact that g is monotone, tells us that fmon disagrees with f on at
most ϵ

5
2d elements ofHd

ϵ/10. The number of x ∈ {0, 1}d not inHd
ϵ/10 is at most ϵ

10
2d, so overall fmon

disagrees with f on at most 3ϵ
10
2d elements of {0, 1}d, in other words ∥f − fmon∥ ≤ 3ϵ

10
. Via triangle

inequality, we have ∥g − fmon∥ ≤ ∥g − f∥+ ∥f − fmon∥ ≤ 2ϵ
5
≤ ϵ, finishing the proof.

Let us remark on the performance of our algorithm in the agnostic setting. Observation 3 on
page 5 of [KKMS08] implies that the algorithm of [BT96] (i.e. Theorem 27), when run in the
agnostic setting, will give a predictor with error at most 8 · opt + ϵ, where opt is the error of best
monotone predictor. Repeating the argument in the proof of Theorem 30 then tells us that in this
setting our proper learning algorithm will also have prediction error C · opt + ϵ for some absolute
constant C. In particular, this means9 in the agnostic learning model of Kearns, Schapire, and
Sellie [KSS94b], our algorithm can handle a noise rate of Ω(ϵ).

We now present how to obtain a better error guarantee in the agnostic setting at a cost of slightly
worse dependence of run-time on ϵ:

Theorem 31 (Proper learning in agnostic setting). In the agnostic setting with examples distributed
uniformly over {0, 1}d, there is a learning algorithm that outputs a circuit computing a monotone
function ĝ, such that if the best monotone predictor has error opt, then the error of the predictor

ĝ is at most 3 · opt + ϵ. The algorithm uses dÕ
(√

d
ϵ

)
samples and run-time. The failure probability

of the algorithm is at most 1/2d.

Proof. The proof, presented in Section 4.5.3, follows a pattern similar to the proof of Theorem
30.

4.4 The LCA for poset sorting

In this section, we prove Theorem 29. First, we give a “global” algorithm for the poset sorting
problem, which reads all the values of f and writes all the values of fmon. The global algorithm
is inefficient, but lends itself easily to a proof of correctness. We prove correctness for the global
algorithm, then give our local implementation and show that it simulates the global algorithm.

4.4.1 A global view

We first present Algorithm 7, which sorts the labels of f in stages by swapping the labels of
pairs of vertices that violate monotonicity. We will show that each stage reduces the maximum

9Let us elaborate. If we take the error parameter in our algorithm to be ϵ/2, then we see that our algorithm will
have prediction error C · opt + ϵ/2. Then, if noise rate opt is ϵ

2C or less, our predictor will be ϵ-competitive with the
best monotone function, as required by the agnostic learning model of Kearns, Schapire, and Sellie [KSS94b].

165

distance between violated vertices by a factor of 2, which produces a monotone function after
log h stages, where h is the height of the input graph.

Before we present the algorithm, we define the following objects that it constructs during its
execution.

Definition 22 (Violation set). We define the set of violated pairs violP (f) as follows:

violP (f) := {(v, w) ∈ P × P : v ≻ w, f(v) = 0 and f(w) = 1}.

Definition 23 (k-violation graph). For a poset P of height h, a function f : P → {0, 1}, and
some k ∈ [h], we define the k-violation graph Bk as follows:

• V (Bk) = P , and

• For (v, w) ∈ violP (f), (v, w) ∈ E(Bk) iff dist(v, w) ≥ k.

Note that Bk is bipartite and undirected.

Algorithm 7: LCA for sorting labels in a poset: the global view
Given: Poset P of height h, function f0 : P → {0, 1}
Output: monotone function over P
Let i← 0
for 0 ≤ i ≤ ⌈log h⌉+ 1 do

Let k ← ⌈h/2i+1⌉
Construct the k-violation graph Bk from P and fi.
Compute a maximal matching in Bk and let λ map matched vertices to each other, and
unmatched vertices to themselves.
For all x ∈ P , let fi+1(x) = fi(λ(x))
i← i+ 1

end for
return fi

4.4.2 Correctness of Algorithm 7

Recall that we are required to show that our algorithm outputs a monotone function that can be
obtained from f by a sequence of monotonicity-violating label swaps. Since it is evident from the
pseudocode that this algorithm only performs such swaps, it remains to show only that the output
is monotone.

Our algorithm works by finding a maximal matching over the k-violation graph Bk, and swap-
ping the matched labels. We first claim that performing this swap reduces the distance (length of
the longest path) between violated labels by at least k.

166

Lemma 22 (Distance shortening lemma). Let P be any poset. Let f be a {0, 1}-valued function
over P and k be a positive integer. Let Bk be as defined in Definition 23. Suppose one picks some
maximal matching M over Bk and obtains a new function f ′ as follows

f ′(x) =

{
f(x) if x was not matched,
f(y) if x was matched to some y.

Then, we have

max
(v,w)∈violP (f ′)

dist(v, w) ≤

max

(
k − 1,

(
max

(v,w)∈violP (f)
dist(v, w)

)
− k
)
.

Proof. Let λ : P → P map x to (i) y if x was mapped to some y by M (ii) x itself otherwise. Note
that f ′(x) = f(λ(x)) and also λ is one-to-one.

Let x, y in P be such that x ≻ y, f(x) = 0 and f(y) = 1. If dist(x, y) ≥ k, it cannot be the
case that both λ(x) = x and λ(y) = y, because then M would not be a maximal matching since
we could also match x to y. Besides, note that if λ(x) ̸= x then λ(x) ≺ x and dist(x, λ(x)) ≥ k.
Analogously, if λ(y) ̸= y then λ(y) ≻ y and dist(y, λ(y)) ≥ k. Additionally, for any a, b, c ∈ P
if a ≻ b ≻ c then dist(a, c) ≥ dist(a, b) + dist(b, c), as there exists a path from a to c that is the
union of the longest paths from a to b and b to c. Taking these observations together, we see that
only following eight cases are possible:

1. dist(x, y) ≤ k − 1.

(a) λ(x) ≻ λ(y) and
dist(λ(x), λ(y)) ≤ dist(x, y) ≤ k − 1.

(b) It is not the case that λ(x) ≻ λ(y).

2. dist(x, y) ≥ k.

(a) λ(x) = x and dist(y, λ(y) ≥ k

i. λ(x) ≻ λ(y) and
dist(λ(x), λ(y)) ≤ dist(x, y)− k.

ii. It is not the case that λ(x) ≻ λ(y).

(b) λ(y) = y and dist(x, λ(x)) ≥ k

i. λ(x) ≻ λ(y) and
dist(λ(x), λ(y)) ≤ dist(x, y)− k.

ii. It is not the case that λ(x) ≻ λ(y).

(c) dist(x, λ(x)) ≥ k and dist(y, λ(y)) ≥ k

i. λ(x) ≻ λ(y) and
dist(λ(x), λ(y)) ≤ dist(x, y)− 2k.

167

ii. It is not the case that λ(x) ≻ λ(y).

In the whole, if λ(x) ≻ λ(y) then dist(λ(x), λ(y)) ≤ max(k − 1, dist(x, y)− k).
Now let’s consider what happens after the swap. Let v0, w0 in P maximize dist(v0, w0) subject

to v0 ≻ w0, f ′(v0) = 0 and f ′(w0) = 1. Let x = λ−1(v0) and y = λ−1(w0). Since f ′(v0) = 0, we
have x ⪰ v0 and since f ′(w0) = 1, we have y ⪯ w0. Therefore, x ≻ y. Also, f(x) = f ′(v0) = 0,
f(y) = f ′(w0) = 1 and λ(x) ≻ λ(y). The conclusion of the previous paragraph tells us that
dist(v0, w0) = dist(λ(x), λ(y)) ≤ max(k − 1, dist(x, y)− k). Overall,

max
(v,w)∈violP (f ′)

dist(v, w) = dist(v0, w0)

≤ max(k − 1, dist(x, y)− k)

≤ max

(
k − 1,

(
max

(v,w)∈violP (f)
dist(v, w)

)
− k
)
,

which finishes the proof.

The following invariant, which will be useful for proving that the output is monotone, is a
consequence of Lemma 22.

Corollary 10 (Distance shortening invariant). The following holds for all fi, 0 ≤ i ≤ ⌈log h⌉:

max
(v,w)∈violP (f)

dist(v, w) ≤
⌈
h

2i

⌉
Proof. We proceed by induction on i. For i = 0, the distance must be at most h, because h is the
height of P . Assume as an inductive hypothesis that the claim holds for some i ≤ ⌈log h⌉.

Bk is a graph with the properties described in Definition 23: it has an edge joining each pair
of vertices in P that violates monotonicity and has distance at least k, for k = ⌈h/2i+1⌉. By
the inductive hypothesis, all such distances are between ⌈h/2i+1⌉ and ⌈h/2i⌉ inclusive. Then
by Lemma 22 we guarantee that

max
(v,w)∈violP (f)

dist(v, w)

≤ max

(⌈
h

2i+1

⌉
− 1,

⌈
h

2i

⌉
−
⌈
h

2i+1

⌉)
≤
⌈
h

2i+1

⌉
.

This completes the induction.

With Corollary 10 in hand, we continue with the proof of correctness.

Lemma 23 (Correctness). For any Boolean function f0, poset P , and any choice of maximal
matchings over Bk in Algorithm 7, the output f⌈log h⌉+1 is monotone over P .

168

Proof. By Corollary 10, we have

max
(v,w)∈violP (f⌈log h⌉)

dist(v, w) ≤
⌈

h

2⌈log h⌉

⌉
= 1

Then f⌈log h⌉ has the property that all pairs that violate monotonicity are immediate neighbors in P .
By one more application of Lemma 22, we have

max
(v,w)∈violP (f⌈log h⌉+1)

dist(v, w)

≤ max

(
1− 1, 1−

⌈
h

2⌈log h⌉+1

⌉)
= 0,

indicating that f⌈log h⌉+1 is monotone.

4.4.3 Local implementation

In this section, we provide an LCA that gives membership query access to the output of Algo-
rithm 7, and we analyze its complexity. To better explain how our LCA simulates Algorithm 7,
we present it as a system of three LCAs, each parameterized by the iteration number i. Algorithm
8 makes queries to the ith function fi and an all-neighbors oracle for P , and answers queries to
the ith k-violation graph Bi. Algorithm 9 makes queries to Bi and answers queries to a maximal
matching λi over it. Algorithm 10 makes queries to fi and λi and answers queries to fi+1, which
swaps the matched labels.

Algorithm 8: An LCA for undirected all-neighbors queries Bi(x, P, fi, h, i)

Given: Target vertex x, all-neighbors (immediate predecessor and successor) oracle for P ,
membership query oracle fi, height h, iteration number i.
Initialize k ← ⌈h/2i+1⌉
if fi(x) = 1 then
S ← the set of all successors of x

else
S ← the set of all predecessors of x

end if
Compute longest path dist(x, y) for each y ∈ S by dynamic programming
Remove any y from S such that dist(x, y) < k or f(y) = f(x)

return S

169

Algorithm 9: An LCA for maximal matchings λi(x,Bi, r, δ)

Given: Target vertex x, undirected all-neighbors query oracle Bi, random seed r, and
confidence parameter δ.
Call the algorithm described in Corollary 7 with Bi as the graph, x as the target, and r as the
random seed and ∆ as the degree bound. If x is in the matching, return the vertex that it is
matched to; otherwise return x.

Algorithm 10: An LCA for membership queries fi+1(x, λi, fi)

Given: Target vertex x, matching query oracle λi, membership query oracle fi
return fi(λi(x))

Analysis of our implementation

Throughout this section, for any algorithm A, the notation T (A) denotes the running time of
A.

Claim 6 (Behavior of Bi). For any 0 ≤ i ≤ ⌈log h⌉ + 1, Bi provides all-neighbors query access
to the ⌈h/2i+1⌉-violation graph of P with respect to fi. Furthermore, if each element of P has at
most ∆ successors or predecessors, then T (Bi) ≤ O(∆ · T (fi)).

Proof. If fi(x) = 1, then all neighbors of x in the ⌈h/2i+1⌉-violation graph of P are successors of
x. Finding all the successors takes O(∆) time by depth-first search. Computing dist(x, y) for each
successor y of x takesO(∆) time by standard dynamic programming techniques for finding longest
paths in a DAG. Comparing fi(x) to fi(y) takes O(∆) queries to fi, and therefore O(∆ · T (fi))
time. The case of fi(x) = 0 is symmetric.

Claim 7 (Behavior of λi). For any 0 ≤ i ≤ ⌈log h⌉+1, and δ ∈ (0, 1], λi provides query access to
a maximal matching over Bi with probability 1 − δ/(⌈log h⌉ + 1), using a random seed of length
poly(∆ log(N/δ)). Furthermore, T (λi) ≤ poly(∆ log(N/δ)) · T (Bi).

Proof. Let δ′ = δ/(⌈log h⌉ + 1). By Corollary 7, λi fails with probability at most δ′, where the
query complexity and the length of the random seed are each poly(∆ log(N/δ′)). Since h is always
at most ∆, this is still poly(∆ log(N/δ)). The claim follows from the fact that since the queries
are made to Bi, each query takes time T (Bi).

We now proceed with our proof of Theorem 29, which we restate here for convenience.

Theorem 29. Let P be a poset of N elements and height h, such that each element in P has at
most ∆ predecessors or successors. Suppose we are given query access to the graph of P , i.e.
for any x ∈ P we can obtain the immediate predecessors or successors of x. Also, suppose we
are given query access to some Boolean function f over P . Then, there is an LCA that solves
the poset-sorting problem for f over P : in other words, it provides query access to a monotone

170

function fmon : P → {0, 1} that can be obtained from f by a sequence of swaps of monotonicity-
violating label pairs. The LCA has query complexity and run-time of

(
∆ log

(
N
δ

))O(log h), and it
uses a random bit-string of length poly(∆ log N

δ
). The failure probability of the LCA is at most δ.

Proof. Assume that for each i ≤ ⌈log h⌉ + 1, the matching provided by λi is maximal for Bi.
Under this condition, fi, λi, and Bi implement LCAs for all the objects expected by Algorithm 7
(by Claim 6 and Claim 7). The correctness result of Lemma 23 implies that our implementation of
f⌈log h⌉+1 is an LCA for a function with the properties claimed in this theorem. We will bound the
running time and query complexity by a recurrence relation.

As a base case, we will let T (f0) be 1. We have three recurrences: T (Bi) ≤ O(∆ · T (fi)),
T (λi) ≤ poly(∆ log(N/δ)) · T (Bi), and T (fi+1) ≤ O(T (fi) + T (λi)). To simplify:

T (fi+1) ≤ O(T (fi) + T (λi))

≤ T (fi) + poly(∆ log(N/δ)) · T (Bi)

≤ T (fi) + poly(∆ log(N/δ)) ·∆T (fi)
≤ poly(∆ log(N/δ)) · T (fi)

This recurrence resolves to
T (fi) = (∆ log(N/δ))O(i)

for both running time and query complexity. Letting i = ⌈log h⌉+ 1, we have a total running time
and query complexity of (∆ log(N/δ))O(log h).

We initialize our algorithm with a random bit string of length poly(∆ log(N/δ)) as required by
Claim 7. Each call to λi fails with probability δ/(⌈log h⌉+ 1); this gives a total failure probability
of δ. Therefore, with probability at least 1 − δ all the matchings are maximal and our analysis
holds.

4.5 Standard proofs

4.5.1 Proof of Corollary 7

For a graph G, one forms the so-called line graph of G, denoted as G′, as follows: (i) the vertex
set of G′ is the edge set of G, (ii) two vertices are connected in G′ if the corresponding edges
in G share a vertex. One sees immediately that maximal matchings on G translate to maximal
independent sets onG′, and vice versa. Therefore, one can use the LCA of [GU19] (described here
in Theorem 26) to get access to a maximal independent set in G′, which will translate to a maximal
matching on G.

An all-neighbor query to G′ can be simulated via two all-neighbor queries to G. The graph G′

has at most ∆N vertices and degree at most 2∆. Overall, this means that the query complexity

171

and the run-time of the LCA are still poly(∆, log(N/δ)), the length of the random bit-string is still
poly(∆, log(N/δ)) and the failure probability is still at most δ.

4.5.2 Proof of Corollary 9

First of all, without loss of generality we can assume δ = 2/3, because error probability can be
reduced via repetition.

Theorem 29 (via Remark 45) allows us to gain query access to fmon, such that distance of f
to fmon is at most twice the distance of f to monotonicity. Then, obtaining the values of both
these functions on i.i.d. uniformly random points of P , we estimate ∥f − fmon∥ up to error 0.005ϵ.
Then, if the distance of f to monotonicity is at least ϵ, the distance ∥f − fmon∥ will be also at least
ϵ, so the value of the estimate will be at least 0.995ϵ. On the other hand, if the distance of f to
monotonicity is at most 0.49ϵ, then ∥f − fmon∥ will at most 0.98ϵ and the value of the estimate will
be at most 0.985ϵ. Overall, checking if the value of the estimate is greater than 0.99ϵ we can see
which of the two cases we are in.

For the estimation to succeed, we need to evaluate f and fmon on O
(

1
ϵ2

)
i.i.d. random elements

of P 10. Overall, this will take ∆O(log h log log∆) (log (N))O(log h) 1
ϵ2

queries and run-time.

4.5.3 Proof of Theorem 31

The proof follows a pattern similar to the proof of Theorem 30. The only modification to the
algorithm in the proof of Theorem 30 is that in step 1 we obtain g by using the agnostic improper
learner of Theorem 28 (instead of the learner of Theorem 27). The accuracy parameter there will
still be ϵ

10
. With probability at least 1/2d both algorithms we use succeed, which we will assume

henceforth.

The run-time analysis remains the same, except the learner in Theorem 28 now takes dÕ
(√

d
ϵ2

)
samples and run-time (as opposed to dO

(√
d
ϵ

)
samples and run-time for the learner in Theorem 27).

Repeating the argument, the overall run-time and sample complexity is also dÕ
(√

d
ϵ2

)
.

Finally, we argue correctness. The function fmon computed by the circuit we output is again
monotone by the same argument as in proof of Theorem 27. Theorem 28 tells us that function f
has generalization error of at most opt + ϵ

10
. Also, let f ∗ be a monotone function with the best

available generalization error of opt. This implies that, f and f ∗ disagree on at most
(
2opt + ϵ

10

)
2d

elements11.
Now, recall that the extra property of the LCA in Theorem 29 (noted in Remark 45) tells us

that for any monotone function q over Hd
ϵ/10, its distance to fmon is at most its distance to f . Taking

10For the LCA of fmon we can set the overall success probability parameter to be 0.1. A Chernoff bound and union
bound argument then shows that overall success probability is at least 2/3.

11Specifically, for a random example-label pair (x, y) (x distributed uniformly) we have Pr [f(x) ̸= f∗(x)] =
Pr [f(x) = y, f∗(x) ̸= y] + Pr [f(x) ̸= y, f∗(x) = y], which can be upper-bounded by Pr [f∗(x) ̸= y] +
Pr [f(x) ̸= y]. Given the bounds we know for these probabilities, the bound on ∥f − f∗∥ follows.

172

q = f ∗, we get that fmon and f ∗ can disagree only on at most
(
2opt + ϵ

10

)
2d elements of Hd

ϵ/10.
The number of x ∈ {0, 1}d not in Hd

ϵ/10 is at most ϵ
10
2d, so overall fmon disagrees with f ∗ on at

most
(
2opt + ϵ

5

)
2d elements of {0, 1}d, in other words ∥f ∗ − fmon∥ ≤ 2opt + ϵ

5
. Via triangle

inequality, the generalization error of fmon is at most the sum of (i) generalization error of f ∗ and
(ii) the distance between fmon and f ∗. This means that the generalization error of fmon is at most
3opt + ϵ

5
≤ 3opt + ϵ, finishing the proof.

4.5.4 Refined local implementation.

Here we explain how an improved run-time can be achieved for posets with additional charac-
teristics. We shall assume that each element of the poset P has at most d immediate predecessors
and at most d immediate successors. Additionally, we assume that the poset P is graded. This
is achieved again by implementing the algorithm in Section 4.4.1, but the run-time is somewhat
faster than the one achieved in in Section 4.4.3. To be fully specific, Section 4.4.1 would give us a
run-time of dO(h log h)(log(N/δ))log h in this setting, which is here improved to dO(h)(log(N/δ))log h.

Similarly to Section 4.4.3, we provide an LCA that gives membership query access to the
output of Algorithm 7, and we analyze its complexity. This is again presented it as a system of
three LCAs, each parameterized by the iteration number i. Algorithm 11 makes queries to the
ith function fi and an all-neighbors oracle for P , and answers queries to the ith k-violation graph
Bi. Algorithm 12 makes queries to Bi and answers queries to a maximal matching λi over it.
Algorithm 13 makes queries to fi and λi and answers queries to fi+1, which swaps the matched
labels.

Algorithm 11: An LCA for undirected all-neighbors queries Bi(x, P, fi, h, i)

Given: Target vertex x, immediate predecessor and successor oracle for P , membership query
oracle fi, height h, iteration number i.
Initialize k ← ⌈h/2i+1⌉
if fi(x) = 1 then
S ← the set of all successors y of x such that k ≤ dist(x, y) ≤ 2k.

else
S ← the set of all successors y of x such that k ≤ dist(x, y) ≤ 2k.

end if
Note: because the poset is graded, the collections of successors and predecessors above can be
found via breath-first search.
Remove any y from S such that f(y) = f(x)
return S

173

Algorithm 12: An LCA for maximal matchings λi(x,Bi, r, δ)

Given: Target vertex x, undirected all-neighbors query oracle Bi, random seed r, and
confidence parameter δ.
Call the algorithm described in Corollary 7 with Bi as the graph, x as the target, and r as the
random seed and d⌈h/2i⌉ as the degree bound. If x is in the matching, return the vertex that it is
matched to; otherwise return x.

Algorithm 13: An LCA for membership queries fi+1(x, λi, fi)

Given: Target vertex x, matching query oracle λi, membership query oracle fi
return fi(λi(x))

Analysis of our implementation

Throughout this section, for any algorithm A, the notation T (A) denotes the running time of
A. This is the same convention used in Section 4.4.3. Furthermore, the following two claims are
analogous to Claim 6 and Claim 7 respectively.

Claim 8 (Behavior of Bi). For any 0 ≤ i ≤ ⌈log h⌉+ 1, suppose

max
(v,w)∈violP (fi)

dist(v, w) ≤ ⌈h/2i⌉.

Then, Bi provides all-neighbors query access to the ⌈h/2i+1⌉-violation graph of P with respect to
fi. Furthermore, the degrees of all vertices in Bi are bounded by d⌈h/2

i⌉ and T (Bi) ≤ O(d⌈h/2
i⌉ ·

T (fi)).

Proof. If fi(x) = 1, then all neighbors of x in the ⌈h/2i+1⌉-violation graph of P are successors
of x. As, ⌈h/2i⌉ ≤ 2⌈h/2i+1⌉ = 2k, we see that initializing S to have only elements of distance
at most 2k does not leave out any neighbors of x in the ⌈h/2i+1⌉-violation graph of P . Compar-
ing with the definition of the ⌈h/2i+1⌉-violation graph of P , we see that the elements given by
Algorithm 11 are precisely the neighbors of x in the ⌈h/2i+1⌉-violation graph of P .

Finally, the bound of d⌈h/2i⌉ on the degree of Bi follows, because each element in P has at
most d immediate predecessors or successors. The bound on the run-time follows from the bound
on degree of Bi.

Claim 9 (Behavior of λi). For any 0 ≤ i ≤ ⌈log h⌉+ 1, and δ ∈ (0, 1], if degrees of all vertices in
Bi are bounded by d⌈h/2

i⌉, then λi provides query access to a maximal matching overBi with prob-
ability 1 − δ/(⌈log h⌉ + 1), using a random seed of length poly(d⌈h/2

i⌉ log(N/δ)). Furthermore,
the run-time T (λi) is bounded by poly(d⌈h/2

i⌉ log(N/δ)) · T (Bi).

Proof. Let δ′ = δ/(⌈log h⌉ + 1). By Corollary 7, λi fails with probability at most δ′, where the
query complexity and the length of the random seed are each poly(d⌈h/2

i⌉ log(N/δ′)). The claim
follows from the fact that since the queries are made to Bi, each query takes time T (Bi).

174

We now proceed with our proof of Remark 5, that is to proving an overall run-time bound of
dO(h)(log(N/δ))log h.

Proof. We first argue, using an induction over i, that fi, λi, and Bi implement LCAs for all the
objects expected by Algorithm 7 (with overall probability of at least 1 − δ) . The base case i =
0 is immediate. Suppose, this holds up to iteration i (i.e. condition on this event). Then, by
Corollary 10 we have

max
(v,w)∈violP (fi)

dist(v, w) ≤ ⌈h/2i⌉,

so the premise of Claim 8 holds. Now, one of the conclusions of Claim 8 is that degrees of all
vertices in Bi are bounded by d⌈h/2i⌉, which is the premise of Claim 9. Together, the conclusions
of Claim 8 and Claim 9, imply that, with probability 1−δ/(⌈log h⌉+1),Bi, λi and fi+1 implement
the corresponding quantities expected by Algorithm 7. Via a union bound over all i we see that
with overall probability of at least 1− δ this indeed holds for all i.

We will bound the running time and query complexity by a recurrence relation. As a base
case, we will let T (f0) be 1. We have three recurrences: T (Bi) ≤ O(d⌈h/2

i⌉ · T (fi)), T (λi) ≤
poly(d⌈h/2

i⌉ log(N/δ)) · T (Bi), and T (fi+1) ≤ O(T (fi) + T (λi)). To simplify:

T (fi+1) ≤ O(T (fi) + T (λi))

≤ T (fi) + poly(d⌈h/2
i⌉ log(N/δ)) · T (Bi)

≤ T (fi) + poly(d⌈h/2
i⌉ log(N/δ)) · d⌈h/2i⌉T (fi)

≤ poly(d⌈h/2
i⌉ log(N/δ)) · T (fi)

Thus, we obtain

T (fi) =

⌈log h⌉∏
i=0

poly(d⌈h/2
i⌉ log(N/δ))

= dO(h)(log(N/δ))log h

for both running time and query complexity.
We note that our algorithm is initialized with a random bit string of length dO(h) polylog(N/δ),

which is as required.

175

Chapter 5

Agnostic proper learning of monotone
functions: beyond the black-box correction
barrier

.

5.1 Chapter Overview.

We note that Chapter 4 largely concerns itself with the problem of realizable learning of mono-
tone functions, i.e. learning a function f that is itself promised to be monotone. In contrast, the
focus of this chapter is the harder setting when the function f we access is arbitrary and we want
to obtain a description of a monotone function gmon that predicts f best among monotone functions
(up to an additive slack of ϵ).

Specifically, in this chapter we consider two fundamental problems in this line of work: ap-
proximating the distance of unknown functions to monotone, and agnostic proper learning of
monotone functions. For each of these problems we are given independent uniform samples {xi}
labeled by an arbitrary function f : {±1} → {±1} and we are required to perform the following
tasks:

1. Estimating distance to monotonicity is the task of estimating up to some additive error ϵ
the distance dist(f, fmon) from f to the monotone function fmon that is closest to f .

2. Agnostic proper learning of monotone functions is the task of obtaining a description
of a monotone function gmon, whose distance dist(f, gmon) approximates dist(f, fmon) up to
additive error ϵ.

Prior to this chapter, it was known that information-theoretically these tasks can be solved using
only 2Õ(

√
d/ϵ) samples. However, all known algorithms had a run-time of 2Ω(d), thus dramatically

exceeding the known sample complexity of 2Õ(
√
d/ϵ). In this chapter, we close this gap in our

176

knowledge and give algorithms for the two tasks above that not only use 2Õ(
√
d/ϵ) samples, but

also run in time 2Õ(
√
d/ϵ). This nearly matches the 2Ω̃(

√
d) lower bound of [BCO+15].

5.1.1 Previous work

The results given in Chapter 4, give mixed additive-multiplicative approximation guarantees in
the settings we study here. Specifically, Chapter 4 gives algorithms that also run in time 2Õ(

√
d/ϵ)

and achieve the following:

1. Obtain a (3, ϵ)-approximation of dist(f, fmon). In other words, the estimate is in the interval
between dist(f, fmon) and 3 · dist(f, fmon) + ϵ. (We also note that Chapter 4 additionally
presents an algorithm that gives a distance estimate in [dist(f, fmon), 2 · dist(f, fmon) + ϵ]
but also requires query access to function f).

2. Obtain a succinct description of a monotone function gmon, whose distance dist(f, gmon)
is a (3, ϵ)-approximation to dist(f, fmon). In other words, it is in the interval between
dist(f, fmon) and 3 · dist(f, fmon) + ϵ. As it is noted in Chapter 4, this yields a fully ag-
nostic learning algorithm only if dist(f, fmon) ≤ O(ϵ).

Overall, Table 5.1 summarizes how this chapter compares with Chapter 4 and other prior work.

Work
Guarantee for distance estimate and
error for proper agnostic learning Sample complexity Run-time

[BT96, KKMS08] with re-
finement from [FKV17]

[dist(f, fmon), dist(f, fmon) + ϵ] 2Õ(
√
d/ϵ) 2Ω(d)

Chapter 4 [dist(f, fmon), 3 · dist(f, fmon) + ϵ] 2Õ(
√
d/ϵ) 2Õ(

√
d/ϵ)

This chapter [dist(f, fmon), dist(f, fmon) + ϵ] 2Õ(
√
d/ϵ) 2Õ(

√
d/ϵ)

Table 5.1: Comparison of our results to previously known algorithms.

5.1.2 Main results

The following are our main results: learning and distance approximation of Boolean functions,
and local correction of real-valued functions.

Theorem 32. [Agnostic proper learning of monotone functions1] There is an algorithm that runs

in time 2Õ
(√

d
ϵ

)
and, given uniform sample access to an unknown function f : {±1}d → {±1}, with

1See Section 5.6.3 for an extension to functions with randomized labels.

177

probability at least 1− 1
2d

, outputs a succinct representation of a monotone function g : {±1}d →
{±1} that is opt+O(ϵ)-close to f , where opt is the distance from f to the closest monotone function
(i.e. the fraction of elements of {±1}d on which f and its closest monotone function disagree).

The corollary below follows immediately by the standard method of [PRR04] that runs the
learning algorithm in Theorem 32 and estimates the distance between g and f .

Corollary 11 (Additive distance-to-monotonicity approximation). There is an algorithm with run-

ning time and sample complexity 2
Õ
(√

d
ϵ

)
that outputs some estimate est of the distance from f to

the closest monotone function fmon. With probability at least 1− 2−d+1, this estimate satisfies the
guarantee

dist(f, fmon) ≤ est ≤ dist(f, fmon) +O(ϵ).

Our main result, Theorem 32, builds on an algorithm that is also of independent interest. It is
a local computation algorithm for solving the “poset sorting problem” as described in Chapter 4
for real-valued functions (note that Chapter 4 only handled Boolean-valued functions). In other
words, the algorithm gives local access to a monotone approximation of a real-valued function that
is close to the optimal monotone approximation in ℓ1 distance. (See Section 5.1.3 for background
on local computation algorithms.)

Theorem 33. [Local monotonicity correction of real-valued functions] Let P be a poset with
N elements, such that every element has at most ∆ predecessors or successors and the longest
directed path has length h. Let f : P → [−1, 1] be α-close to monotone in ℓ1 distance. There is
an LCA that makes queries to f and outputs queries to g : P → [−1, 1], such that g is monotone
and ||f − g||1 ≤ 2α + 3ϵ. The LCA makes (∆ logN)O(log h log(1/ϵ)) queries, uses a random seed of
length poly(∆ logN), and succeeds with probability 1−N−10.

5.1.3 Our techniques: beyond the black-box correction barrier.

The algorithms in Chapter 4 follow the following pattern (which we also summarize in Fig-
ure 5-1):

1. Use [BT96, KKMS08, FKV17] to obtain a succinct description of a (possibly non-monotone)
function fimproper whose distance dist(f, fimproper) is at most dist(f, fmon) + ϵ. The issue now
is that fimproper is not necessarily monotone, and therefore the distance dist(f, fimproper) might
dramatically underestimate the true distance to monotonicity dist(f, fmon).

2. Design and use a monotonicity corrector, in order to transform the succinct description of
fimproper into a succinct description of some monotone function gmon that is close to fimproper.
Formally, Chapter 4 develops a corrector that guarantees that the distance dist(fimproper, gmon)
satisfies

dist(fimproper, gmon) ≤ c min
monotone f’

dist(fimproper, f
′) + ϵ, (5.1)

where the constant c is 2. They achieve this by a novel use of Local Computation Algo-
rithms (LCAs) on graphs.

178

Figure 5-1: Control-flow diagram of the semiagnostic algorithm of Chapter 4

This way, Chapter 4 obtains a succinct polytime-evaluable description of a monotone function gmon

for which2 dist(f, gmon) ≤ 3 · dist(f, fmon) + ϵ.
However, one can see that even if the correction constant c in Equation (5.1) were equal to 1

(which is the best it can be) this approach could only yield a guarantee no better than dist(f, gmon) ≤
(2−o(1)) ·dist(f, fmon)+ϵ. In particular, we claim that for a randomized function f , no black-box
correction approach can give a classifier whose error is (2−Ω(1)) · dist(f, fmon). Formally, no al-
gorithm that receives the best non-monotone predictor g for a randomized function f can produce,
only on the basis of the predictor g and no additional information about f , a predictor f̂ satisfying
dist(f, f̂) ≤ (2 − Ω(1)) · dist(f, fmon). This follows from the following argument. For an odd
value of d, consider the following two random-valued functions f1 and f2 over {±1}d defined as
follows3:

• f1(x) = −1 always for x satisfying
∑

i xi > 0, and for x satisfying
∑

i xi < 0 we have
f1(x) = +1 with probability 0.5 + o(1) and f1(x) = −1 with probability 0.5− o(1).

• f2(x) = +1 always for x satisfying
∑

i xi < 0, and for x satisfying
∑

i xi > 0 we have
f2(x) = −1 with probability 0.5 + o(1) and f2(x) = −1 with probability 0.5− o(1).

Denoting f1,mon and f2,mon the best monotone predictors for f1 and f2 respectively, we see that
f1,mon is the function that takes the value−1 on all elements of {±1}d and f2,mon is the function that
takes the value +1 on all elements of {±1}d. Overall we have dist(f1, f1,mon) = 0.25 + o(1) and
dist(f2, f2,mon) = 0.25 + o(1). Let g be the function that maps to −1 values of x with

∑
i xi > 0

and to +1 values of x with
∑

i xi < 0. We see that, for both f1 and f2, the function g is the
best among all general predictors (i.e. predictors that are not necessarily monotone). However, we
claim that no algorithm can transform g into a monotone function f̂ that both satisfies dist(f1, f̂) ≤
(2 − Ω(1)) · dist(f1, f1,mon) = 0.5 − Ω(1) and dist(f2, f̂) ≤ (2 − Ω(1)) · dist(f2, f2,mon) =

0.5 − Ω(1), because we claim that no such monotone function f̂ exists. Indeed, let α ∈ [0, 0.5]

denote the probability Prx∼{±1}d [
∑

i xi > 0 and f̂ = +1]. From monotonicity of f̂ , we see that
Prx∼{±1}d [

∑
i xi < 0 and f̂ = −1] ≥ 0.5− α. Overall, we see that dist(f1, f̂) ≥ α + 0.25− o(1)

and that dist(f1, f̂) ≥ 0.75 − α − o(1). Overall, for every α in [0, 0.5], at least one of these
quantities is at least 0.5− o(1).

2Strictly speaking, the properties of the corrector described so far yield only a guarantee of dist(f, gmon) ≤ 4 ·
dist(f, fmon) + ϵ. To improve the multiplicative error constant from 4 to 3 the work in Chapter 4 uses an additional
property of the corrector.

3Note that the functions f1 and f2 are randomized functions that can map the same value of x to +1 or to −1 with
some probability depending on x. See Section 5.6.3 for more information on randomized functions.

179

Figure 5-2: Control-flow diagram of the fully agnostic learning algorithm presented in this chapter
(the final rounding step is omitted).

Description of our approach

In this chapter, we overcome the black-box correction barrier by using a different approach,
summarized in Figure 5-2. As before, there is an improper learning phase and a correction phase;
however in both phases we work with real-valued functions. We have essentially three steps:

1. Find a real-valued polynomial P that is ϵ-close to some monotone function, (opt+ ϵ)-close4

to the unknown function f in ℓ1 distance, and bounded in [−1, 1].

2. Obtain a succinct description of a real-valued function PCORRECTED that is monotone, and
O(ϵ)-close to P in ℓ1 distance.

3. Round the real-valued function PCORRECTED to be {±1}-valued, while preserving monotonic-
ity and closeness to f .

In contrast to the approach of Chapter 4, the improper learning phase is constrained to produce
a good predictor that is ϵ-close to some monotone function, regardless of how far f may be from

4Since opt is unknown, we instead guess values of opt in increments of ϵ.

180

monotone. Existing improper learning algorithms are far from satisfying this new requirement.
We design a new improper learner by combining the polynomial-approximation based techniques
of [BT96, KKMS08, FKV17] with graph LCAs and the ellipsoid method for convex optimization.

The improper learning task is a convex feasibility problem; the set of polynomials satisfying
the constraints we give in step (1) is a convex subset of the initial convex set of low-degree real
polynomials. The ellipsoid method requires a separation oracle, i.e. some way to efficiently
generate a hyperplane separating a given infeasible polynomial from the feasible region. Such
hyperplanes are themselves low-degree real polynomials, which have high inner product with the
infeasible polynomial and low inner product with every point in the feasible region. The separator
for the set of polynomials that are (α + ϵ)-close to f is, as shown in Figure 5-2, just the gradient
of the prediction error; the more interesting case is the separator for the set of polynomials that are
ϵ-close to monotone.

With an argument inspired by the characterization of Lipschitz functions given in [BRY14a],
we observe that if a real-valued polynomial P is far from monotone, this can be witnessed by a
large matching on the pairs of elements on which P violates monotonicity. Given any description
of the matching, we show how to extract a separating hyperplane for P by evaluating the matching
on a set of sample points. Therefore, the challenge is to find a description of a sufficiently large
matching that can also be evaluated quickly. We elaborate on this in the next section.

Step (2) requires another technical contribution, which is an extension of the poset-sorting LCA
of Chapter 4 to real-valued functions. This extension is crucial for us to achieve the overall agnostic
learning guarantee, because in the improper learning phase we obtain a real-valued function that is
only close to monotone in ℓ1 distance.5 For step (3) we use the rounding procedure of [KKMS08]
that rounds real-valued functions to {±1}-valued functions, and we show that this procedure also
preserves monotonicity.

LCAs and succinct representations of large objects

In this chapter we employ heavily the concept of a succinct representation. The succinct rep-
resentations we deal with will have size and evaluation time 2Õ(

√
d/ϵ). To be fully specific, we

consider succinct representations of two types of objects:

• A succinct representation of a function f : {±1}d → R is an algorithm that, given x ∈
{±1}d, computes f(x) in time 2Õ(

√
d/ϵ).

• A succinct representation of a (possibly weighted) graph G with the vertex set {±1}d is an
algorithm that, given v ∈ {−1, 1}d, outputs all its neighbors and the weights of correspond-
ing edges in time 2Õ(

√
d/ϵ).

A polynomial of degree O(
√
d) is an example of a succinct representation, but another type of

representation that makes frequent appearances in this chapter is a local computation algorithm, or
5One can construct functions that are arbitrarily close to monotone in ℓ1 norm but a constant fraction of their values

needs to be changed for them to become monotone. Because of this, the corrector of Chapter 4 was not fit for our
correction stage.

181

LCA [ARVX12b, RTVX11b]. An LCA efficiently computes a function over a large domain. For
example, an LCA for an independent set takes as input some vertex v, makes some lookups to the
adjacency list of the graph, then outputs “yes” or “no” so that the set of vertices for which the LCA
would output “yes” form an independent set. Typically, its running time and query complexity
are each sublinear in the domain size. We require that all LCAs used in this chapter have outputs
consistent with one global object, regardless of the order of user queries, and without remembering
any history from previous queries. This property allows us to use the LCA, in conjunction with
any succinct representation of the graph, as a succinct representation of the object it computes. We
formalize this relationship in Section 5.2.4.

5.1.4 Other related work

The local correction of monotonicity was studied in [ACSL08, SS10b, BGJ+10, AJMR14] and
in Chapter 4 of this thesis (see Chapter 4 for an overview of previously available algorithms for
monotonicity correction and lower bounds).

The work of [CGG+17] gives an improper learning algorithm for a function class that is larger
than monotone functions. Additionally, we note that testing of monotone functions has also been
studied over hypergrids [CS13b, BRY14a, BCS18, BCS20].

In addition to [Gha22], there have been many exciting recent works on local computation algo-
rithms (LCAs). Some examples include [RTVX11b], [ARVX12b], [LRY17], [GHL+15], [RV16],
[EMR14], [Gha15], [CFG+19], [ELMR21] , [PRVY19], [GU19],[LRR20], [AL21], [BGR21] and
[GR21].

5.2 Preliminaries

5.2.1 Posets and {−1, 1}d

Let P be a partially-ordered set. We use ⪯ to denote the ordering relation on P . We say x ≺ y
(“x is a predecessor of y”) if x ⪯ y and x ̸= y, and use the analogous symbols ⪰ and ≻ for
successorship. If x ≺ y and there is no z in P for which x ≺ z ≺ y, then x is an immediate
predecessor of y and y is an immediate successor of x. We refer to the poset P and its Hasse
diagram (DAG) interchangeably. The transitive closure TC(P) is the graph on the elements of P
that has an edge from each vertex to each of its successors. A succinct representation of P with
size s is any computational procedure whose description is stored in s bits of memory that takes a
vertex as input, outputs the sets of immediate predecessors and immediate successors, and runs in
time O(s) in the worst case over vertices.

Specific posets of interest in this chapter are the Boolean cube and the weight-truncated cube.
We give a definition and a size-O(d/ϵ) representation computing the truncated cube.6

6See Algorithm 14 for the computational procedure that provides access to immediate successors and predeces-
sor of a given element. Note that only size O(d/ϵ) is necessary because one can, for example, store a circuit that

182

Definition 24. The d-dimensional Boolean hypercube is the set {−1, 1}d. For x, y ∈ {−1, 1}d, we
say x ⪯ y if for all i ∈ {1, · · · , d} one has xi ≤ yi. It is immediate that {−1, 1}d is a poset with
2d elements.

We also define the truncated hypercube

Hd
ϵ :=

{
x ∈ {−1, 1}d :

∣∣∣∣∣∑
i

xi

∣∣∣∣∣ ≤
√

2n log
2

ϵ

}
,

Via Hoeffding’s bound, we have that the fraction of elements in {0, 1}d that are not also in Hϵ
n is

at most 2 exp
(
−2t2

4n

)
= ϵ.

Algorithm 14: LCA: TRUNCATEDCUBE(x, ϵ)

Given: Input x ∈ {−1, 1}d, truncation parameter ϵ

return {y | y differs from x in one bit and

|
∑

j yj| ≤
√

2n log 2
ε
}

Fourier analysis over {±1}n.

Let [n] denote the set {1, 2, · · · , n}. We define for every S ⊆ [n] the function χS : {±1}n → R
as χS(x) :=

∏
i∈S xi. We define the inner product between two functions g1, g2 : {±1}n → R as

follows: ⟨g1, g2⟩ := Ex∼{±1}d [g1(x)g2(x)]. It is known that ⟨χS1 , χS2⟩ = 1S1=S2 . For a function
g : {±1}d → R we denote ĝ(S) := ⟨g, χS⟩. It is known that

g(x) =
∑
S⊆[n]

ĝ(S)χS(x) ⟨g1, g2⟩ =
∑
S⊆[n]

ĝ1(S)ĝ2(S).

5.2.2 Monotone functions

Part of our algorithm concerns monotonicity of functions over general posets. For a function
f : P → R, we say that a pair of elements x, y ∈ P forms a violated pair if we have x ⪯ y but
f(x) > f(y), and we define the violation score vs(x, y) := f(x) − f(y). The violation graph
viol(f) is the subgraph of TC(P) induced by violated pairs in f . The weight of an edge is the
difference f(x)− f(y).

The ℓ1 distance of f to monotonicity dist(f,mono) is the ℓ1 distance of f to the closest real-
valued monotone function.

implements Algorithm 14.

183

Definition 25 (Distance to monotonicity). The ℓ1 distance of f : P → R to monotonicity is its
distance to the closest real-valued monotone function.

dist1(f,mono) := min
monotone g:P→R

[
1

|P |
∑
x∈P

|f(x)− g(x)|
]

The Hamming distance to monotonicity of f : P → {−1, 1} is defined analogously.

dist0(f,mono) := min
monotone g:
P→{−1,1}

[
1

|P |
∑
x∈P

1[f(x) ̸= g(x)]

]

We will need a bound on how well monotone functions can be approximated by low-degree
polynomials. The following fact follows7 from [BT96, KKMS08] and a refinement by [FKV17].

Fact 7. For every monotone f : {−1, 1}d → {−1, 1} and ϵ > 0, there exists a multilinear
polynomial p of degree ⌈4·

√
d

ϵ
log 4

ϵ
⌉ such that

||f − p||1 ≤ ϵ.

5.2.3 Convex optimization

The following notion is standard in convex optimization.

Definition 26. A separation oracle for a convex set Cconvex is an oracle that given a point x does
one of the following things:

• If x ∈ Cconvex, then the oracle outputs “Yes”.

• If x /∈ Cconvex, then the oracle outputs (do, Qseparation), where Qseparation ∈ Rd represents a
direction along which x is separated from Cconvex. Formally, ⟨Qseparation, x⟩ > ⟨Qseparation, x

′⟩
for any x′ in Cconvex.

We will need the following well-known fact from convex optimization:

Fact 8. [Kha80] There is an algorithm ELLIPSOIDALGORITHM that takes as inputs positive real
values r andR, and access to a separation oracle for some convex set Cconvex ⊂ {x ∈ Rd : ∥x∥ ≤
R}. The algorithm runs in time poly

(
d, log R

r

)
and either outputs an element in Cconvex or outputs

FAIL. Furthermore, if Cconvex contains a ball of radius r, the algorithm is guaranteed to succeed.

Also see [LSW15] for an overview of algorithms building on [Kha80].

7see Chapter 4 for more explanation on how these references yield the fact below.

184

5.2.4 LCAs and succinct representations

We use the following LCAs in this chapter8 :

Theorem 34 (LCA for maximal matching [Gha22]). There is an algorithm GHAFFARIMATCH-
ING that takes adjacency lists access to a graph G, with N vertices and largest degree at most
∆, a random string r ∈ {0, 1}poly(∆,log(N/δ)), parameter δ ∈ (0, 1) and a vertex v ∈ G. The
algorithm outputs the identity of a vertex u : (u, v) ∈ E(G) or ⊥. The algorithm runs in time
poly(∆, log(N/δ)) and with probability at least 1− δ over the choice of r the condition of global
consistency holds i.e. the set of edges {(u, v) ∈ G : GHAFFARIMATCHING(G, r, δ, u) = v} is a
maximal matching in the graph G.

Theorem 35 (LCA for monotonicity correction of Boolean-valued functions from Chapter 4).
There is an algorithm BOOLEANCORRECTOR that takes access to a function f : P → {−1, 1}
and adjacency lists access to a poset P with N vertices, such that each element has at most ∆
predecessors and successors and the longest directed path has length h, a random string r ∈
{0, 1}poly(∆,log(N/δ)), a parameter δ ∈ (0, 1) and an element x in P . The algorithm outputs a value
in {−1, 1}. The algorithm runs in time ∆O(log h) · polylog(N/δ) and with probability at least 1− δ
over the choice of r the condition of global consistency holds i.e. the function g : P → {−1, 1}
defined as g(x) := BOOLEANCORRECTOR(P, r, δ, x) is monotone and is such that Prx∼P [g(x) ̸=
f(x)] ≤ 2 · dist(f,mono).

An important idea in Chapter 4 is that LCAs (i.e. algorithms that achieve global consistency)
can be used to operate on succinct representations of combinatorial objects. To explain further, we
need the following definition:

Definition 27 (Succinct representation). A succinct representation of a function f of size s is a
description of f that is stored in s bits of memory and can be evaluated on an input in O(s) time.

For example, circuits of size s and polynomials of degree log s are examples of succinct rep-
resentations of size s and dlog s respectively. The following fact follows immediately from the
definition:

Fact 9 (Composition of representations). If a function f has a description that uses t bits of mem-
ory and evaluates in time O(t) given q oracle queries to a function g, and g has a succinct repre-
sentation of size s, then there is a succinct representation of f of size O(t+ sq).

Now, for example, combining9 Fact 9 and Theorem 34 we see immediately that for a graph
G, with N vertices and largest degree at most ∆, using the algorithm in Theorem 34 we can

8To be fully precise, [Gha22] gives an LCA for the task of maximal independent set. The reduction to maximal
matching is standard, see e.g. Chapter 4.

9A note on the description sizes of LCAs: because LCAs are uniform (i.e. Turing-machine) algorithms, they can
be simulated with a uniform circuit family. For each input size, the size of the corresponding circuit is polynomial in
the running time of the LCA for that input size.

185

transform a size-s representation10 of a function computing all-neighbor access to G into a size-(
∆O(log h) · polylog(N/δ) · s

)
representation11 of a function that determines membership in some

maximal matching overG. Note that this transformation itself runs in time ∆O(log h)·polylog(N/δ)·
s. Analogously, in an exact same fashion it is possible to combine Fact 9 and Theorem 35.

5.3 Our algorithms

In this section we give descriptions of the agnostic learning algorithm and its major components
(we will analyze the algorithms in the subsequent sections). The algorithm MONOTONELEARNER

makes calls to
ELLIPSOIDALGORITHM, where the optimization domain is the ≤ d

⌈
4·
√
d

ϵ
log 4

ϵ

⌉
-dimensional space

of degree-
⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomials over Rd, and constraints given by ORACLEα,d,ϵ. It also makes

calls to HYPERCUBECORRECTOR, which is given in Corollary 13.
The subroutine ORACLE takes as input a polynomial and provides the separating hyperplane

required by ELLIPSOIDALGORITHM. It makes calls to HYPERCUBEMATCHING (see Lemma 31),
which provides a high-weight matching over the pairs of labels that violate monotonicity.

The algorithm MATCHVIOLATIONS finds a high-weight matching on the violation graph of a
poset. It is the main component of HYPERCUBEMATCHING, which is just a wrapper that calls
MATCHVIOLATIONS on the truncated cube. FILTEREDGES removes vertices that are either in-
cident to M or have weight below the threshold t, and GHAFFARIMATCHING is the maximal
matching algorithm of Theorem 34. More implementation details and analysis are given in Sec-
tion 5.5.

The following is the core of HYPERCUBECORRECTOR, given as a “global overview” for con-
venience. Analysis and local implementation are given in Section 5.4. The algorithm corrects
monotonicity of a k-valued function over a poset. HYPERCUBECORRECTOR is a wrapper that
discretizes a real-valued function and then calls this corrector with the truncated hypercube as the
poset.

5.4 Analysis of the local corrector

In this section, we prove Theorem 33 by analyzing our algorithm for correcting a real-valued
function over a poset in a way that preserves the ℓ1 distance to monotonicity within a factor of 2.
This extends the monotonicity corrector of Chapter 4 to handle functions with non-Boolean ranges.

Lemma 24 (ℓ1 correction of k-valued functions). Let P be a poset and f : P → [k] be α-close
to monotone in ℓ1 distance. There is an LCA that makes queries to f and outputs queries to
g : P → [k], such that g is monotone and ||f − g||1 ≤ 2α. The LCA makes (∆ logN)O(log h log k)

10For simplicity, in the rest of the chapter we will refer to such functions as a “succinct representation of G.”
11For simplicity, in the rest of this chapter we will refer to such functions simply as “representation of a maximal

matching.”

186

Algorithm 15: Algorithm MONOTONELEARNER (d, ϵ, T)

1: Given: Integer d, ϵ ∈ (0, 1), and uniform sample access to unknown f : {±1}d → {±1}.
2: Output: Circuit C : {±1}d → {±1}.
3: for α ∈ {ϵ, 2ϵ, 3ϵ, · · · 1− ϵ, 1 + 200ϵ} do

4: OptimizationResult← ELLIPSOIDALGORITHM

(
1, ϵ · d−

1
2

⌈
4·
√
d

ϵ
log 4

ϵ

⌉
,ORACLEα,d,ϵ

)
.

5: if OptimizationResult̸=FAIL then
6: PGOOD = OptimizationResult
7: PGOOD

TRIMMED ← representation of a function that takes input x and outputs the value
PGOOD(x) if PGOOD(x) ∈ [−1,+1]

1 if PGOOD(x) > 1

−1 if PGOOD(x) < −1

8: PGOOD
CORRECTED ← representation of a function that takes input x and returns the value

HYPERCUBECORRECTOR(x, PGOOD
TRIMMED, r)

9: T ← 200
ϵ2

log
(
20
ϵ

)
log(20d) i.i.d. pairs (xi, f(xi)), with xi sampled uniformly from

{−1, 1}d.
10: ThresholdCandidates←

{
1
ϵ

i.i.d. uniformly random elements in [−1, 1]
}

.

11: t∗ := argmint∈ThresholdCandidates

[
1
|T |
∑

x∈T
[∣∣sign(PGOOD

CORRECTED(x)− t)− f(x)
∣∣]]

12:
13: return representation of a function that takes input x and returns the value

sign(PGOOD
CORRECTED(x)− t∗)

14: end if
15: end for

187

Algorithm 16: Subroutine ORACLEα,d,ϵ(P)

1: Given: ϵ, α ∈ (0, 1), degree-
⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomial P over Rd with ∥P∥2 ≤ 1, and

uniform sample access to an unknown function f : {±1}d → {±1}.
2: Output: ”Yes” or (”No”, Qseparator), where Qseparator is a degree-

⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomial over

Rd.
3: PTRIMMED ← representation of a function that takes input x and outputs

P (x) if P (x) ∈ [−1,+1]

1 if P (x) > 1

−1 if P (x) < −1
.

4: T ← set of d
C
√
d

ϵ
log 1

ϵ i.i.d. pairs (xi, f(xi)), with xi sampled uniformly from {−1, 1}d (for
sufficiently large constant C).

5: r ← string of 2C
√
d(log d·log 1

ϵ
)C random i.i.d. bits (for sufficiently large constant C).

6: Mseparator ← representation of a function that takes input x and outputs
0 if HYPERCUBEMATCHING(PTRIMMED, ϵ/4, r) does not match x to any other vertex
1 if HYPERCUBEMATCHING(PTRIMMED, ϵ/4, r) matches x to some vertex z, s.t. z ⪯ x

−1 if HYPERCUBEMATCHING(PTRIMMED, ϵ/4, r) matches x to some vertex z, s.t. z ⪰ x

7: if 1
|T |
∑

x∈T [Mseparator(x) · PTRIMMED(x)] > 5ϵ then

8: Qseparator ←
∑

S⊂[d]: |S|≤
⌈
4·
√
d

ϵ
log 4

ϵ

⌉ (1
|T |
∑

x∈T [Mseparator(x) · χS(x)]
)
χS

9:
10: return (“No”, Qseparator)
11: else if 1

|T |
∑

x∈T [|f(x)− P (x)|] > α+ 50ϵ then

12: Qseparator ←
∑

S⊂[d]|S|≤
⌈
4·
√
d

ϵ
log 4

ϵ

⌉ (Ex∼T

[
P̂ (S)χS(x)sign(P (x)− f(x))

])
χS

13:
14: return (“No”, Qseparator)
15: else
16:
17: return “Yes”
18: end if

188

Algorithm 17: MATCHVIOLATIONS(P, f, ϵ, r = r1 ◦ . . . ◦ r⌈log 2/ϵ⌉)
Given: Poset P and function f : P → [−1, 1] given as succinct representations, weight
threshold ϵ, random seed r = r1 ◦ . . . ◦ r⌈log 2/ϵ⌉
Output: Succinct representation of a high-weight matching on the violating pairs of P w.r.t. f
if ϵ < 1/|P | then
M ← representation of the greedy algorithm that adds each edge (x, y) of TC(P) in
decreasing order of f(x)− f(y).

else
t← 2
i← 1
M ← representation of a function computing the empty matching
while t > ϵ/2 do
P ′ ← representation of a function that takes input x and outputs
FILTEREDGES(TC(P), f, t,M, x)
M ← representation of a function that takes input x and outputs M(x) if M(x) ̸= ⊥,
otherwise GHAFFARIMATCHING(P ′, ri, x))
t← t/2
i← i+ 1

end while
end if

return M

Algorithm 18: Global view of sorting k-valued labels in a poset
1: Given: Poset P of height h, function f : P → [k]
2: Output: monotone function g : P → [k]
3: Let i← 0
4: for 0 ≤ i ≤ ⌈log k⌉ do
5: Let fi be the projection of f onto the ith most significant bit of k, i.e. fi(x) = 1 if the ith

bit of f(x) is 1.
6: Let Pi be the poset on the elements of P with the relation

x ≺Pi
y := x ≺P y and fj(x) = fj(y) for all j < i.

7: Let πi ← BOOLEANCORRECTOR(fi, Pi).
8: Let f ← fπi.
9: end for

10:
11: return f

189

queries, where ∆ is the maximum number of predecessors or successors of any element in P , N is
the number of vertices, and h is the length of the longest directed path.. It uses a random seed of
length poly(∆ logN), and succeeds with probability 1−N−10.

The following lemmas are used in the proof of correctness of our algorithm. Their proofs are
deferred to the appendix.

Lemma 25 (Equivalence of k-valued and bitwise monotonicity). Let f : P → [k] be a function
and fi be the projection of f onto the ith most significant bit of k, i.e. fi(x) = 1 if the ith bit of
f(x) is 1, for each i ∈ [⌈log k⌉]. Let Pi be the poset on the elements of P with the relation

x ≺Pi
y := x ≺P y and fj(x) = fj(y) for all j < i.

Then f is monotone if and only if each fi is monotone over the corresponding Pi.

Lemma 26 (Preservation of closeness to monotone functions). Let g be obtained from f by swap-
ping the labels of a pair x ≺P y that violates monotonicity. Then for any monotone function m,
||g −m||1 ≤ ||f −m||1.

The corollary follows from repeated application of Lemma 26 and the triangle inequality.

Corollary 12 (ℓ1 error preservation). Let g be obtained from f by a series of swaps of label pairs
that violate monotonicity in f . Then ||g − f ||1 ≤ 2 · dist1(f,mono).

We also require a modification to the LCA claimed in Theorem 35 for correcting Boolean
functions. That algorithm works by performing a sequence of label-swaps on pairs that violate
monotonicity in the poset, then outputting the function value that ends up at the queried vertex x.
It can instead track the swaps and output the identity of the vertex that x receives its final label
from. The modified algorithm can be thought of as an LCA that gives query access to a label
permutation.

Fact 10 (Poset sorting algorithm implicit in Chapter 4). Let P be a poset with N vertices such that
every element has at most ∆ predecessors and successors, and the longest directed path has length
h. Let f : P → {−1, 1} be α-close to monotone in Hamming distance. There is an algorithm
BOOLEANCORRECTOR that gives query access to a permutation π of P such that fπ is a mono-
tone function and Prx∼P [f(x) ̸= (fπ)(x)] ≤ 2α. The LCA implementation of BOOLEANCORREC-
TOR uses (∆ logN)O(log h) queries and running time, has a random seed of length poly(∆ logN),
and succeeds with probability 1−N−11.

Here we present the LCA implementation of Algorithm 18.

Lemma 27 (Correctness and query complexity of Algorithm 19). With probability 1 − i · N−11

over a random seed r of length poly(∆ logN), the algorithm k-CORRECTOR(x, P, f, i, r) gives
query access to a function g that is monotone when truncated to the first i most significant bits. Its
query complexity is (∆ logN)O(i log h+1), and ||g − f ||1 ≤ 2α, where α is the ℓ1 distance of f to
the nearest monotone function.

190

Algorithm 19: LCA implementation of Algorithm 18, k-CORRECTOR(x, P, f, i, r)

1: Given: Target vertex x, all-neighbors (immediate predecessor and successor) oracle for P ,
query access to f : P → [k], iteration number i, random seed r = r1 ◦ . . . ◦ ri.

2: Output: query access to function g : P → [k] which is monotone when truncated to the first i
most significant bits.

3: if i = 0 then
4: return f(x)
5: else
6: S ← the set of all predecessors and successors of x in P
7: for y ∈ S do
8: Let f ′(y)←k-CORRECTOR(y, P, f, i− 1, r1 ◦ . . . ◦ ri−1).
9: end for

10: Let f ′
i be defined as in Algorithm 18, and P ′

i be similarly defined with respect to f ′
i .

11: Remove any y from S such that f ′
i(y) = f ′

i(x) or y and x are incomparable in P ′
i .

12: Let z ← BOOLEANCORRECTOR(x, P ′
i , f

′
i , ri)

13:
14: return f ′(z)
15: end if

Algorithm 20: HYPERCUBECORRECTOR(f, ϵ, r)

Given: function f : {−1, 1} → [−1, 1] given as succinct representation, additive error
parameter ϵ > 0, random seed r = r1 ◦ . . . ◦ r⌈log 1/ϵ⌉.
Output: succinct representation of monotone function g : {−1, 1} → [−1, 1].
P ← representation of a function that takes x and outputs TRUNCATEDCUBE(x, ϵ)
f ′ ← representation of a function that takes x and outputs ⌊f(x)/ϵ⌋
f ′′ ← representation of a function that takes x and outputs
ϵ · k-CORRECTOR(x, P, f ′, ⌈log(1/ϵ)⌉, r) −

√
2d log 2/ϵ ≤ |x| ≤

√
2d log 2/ϵ

1 |x| ≥
√
2d log 2/ϵ

−1 |x| ≤ −
√

2d log 2/ϵ

return f ′′

191

Proof. Fix the random seed r and assume all calls to BOOLEANCORRECTOR succeed with r, then
we proceed by induction. In the base case, f is certainly monotone when truncated to 0 bits and
the algorithm makes only 1 query. In the inductive case, suppose the claim holds for i− 1; in other
words k-CORRECTOR(y, P, f, i− 1, r1 ◦ . . . ◦ ri−1) makes (∆ logN)O((i−1) log h+1) queries and re-
turns a function that is monotone in the first i−1 bits. Then when k-CORRECTOR is called with iter-
ation number i, the function f ′

j is monotone over P ′
j for all j < i. BOOLEANCORRECTOR(x, P ′

i , f
′
i , ri)

returns a vertex to swap labels with x such that the resulting function is monotone in the ith bit, over
the poset P ′

i . Then the function returned by k-CORRECTOR satisfies the conditions of Lemma 25
for the first i bits, so it must be monotone in the first i bits.

We now bound the failure probability and distance to f . The failure probability of BOOLEAN-
CORRECTOR isN−11 and we call BOOLEANCORRECTOR on i different graphs, so by union bound
the total failure probability is ≤ i · N−11 as desired. The fact that ||g − f ||1 ≤ 2α follows from
Corollary 12.

We can now prove Theorem 33.

Theorem 33. [Local monotonicity correction of real-valued functions] Let P be a poset with
N elements, such that every element has at most ∆ predecessors or successors and the longest
directed path has length h. Let f : P → [−1, 1] be α-close to monotone in ℓ1 distance. There is
an LCA that makes queries to f and outputs queries to g : P → [−1, 1], such that g is monotone
and ||f − g||1 ≤ 2α + 3ϵ. The LCA makes (∆ logN)O(log h log(1/ϵ)) queries, uses a random seed of
length poly(∆ logN), and succeeds with probability 1−N−10.

Proof of Theorem 33. Given some ϵ ∈ (0, 1/2), let fϵ(x) := ⌊f(x)/ϵ⌋; certainly queries to fϵ
can be simulated by queries to f . On input x, run k-CORRECTOR(x, P, fϵ, ⌈log(2/ϵ)⌉, r) with
a random seed r of length poly(∆ logN). By Lemma 27, this makes (∆ logN)O(log(1/ϵ) log h)

queries to fϵ and outputs gϵ(x), where g is monotone and ||gϵ − fϵ||1 ≤ 2 · dist1(fϵ,mono).
Since f is α-close to some monotone function m, we have dist1(fϵ,mono) ≤ ||fϵ − m/ϵ||1 ≤
||f/ϵ−m/ϵ||1 + ||f/ϵ− fϵ||1 ≤ α/ϵ+ 1.

Return g(x) := ϵ · gϵ(x). Then

||g − f ||1 = ||ϵgϵ − f ||1 ≤ ||ϵgϵ − ϵfϵ||1 + ||ϵfϵ − f ||1 ≤
≤ 2ϵ(α/ϵ+ 1) + ϵ ≤ 2α + 3ϵ.

The failure probability isN−11·⌈log(2/ϵ)⌉ by Lemma 27, but we will assume that ⌈log(2/ϵ)⌉ < N .
Otherwise, the allowed query complexity and running time would exceed ∆N , which is > ∆N for
any ∆, N > 1. WithO(∆N) query complexity and running time, a trivial algorithm would suffice:
one could solve the linear program with ∆N monotonicity constraints, minimizing ||g − f ||1.
Under our assumption, the failure probability is at most N−10.

Corollary 13 (Monotonizing a representation of a function on the Boolean cube). Let f : {−1, 1}d →
[−1, 1] be α-close to monotone in ℓ1 distance, given as a succinct representation of size sf . There

192

is an algorithm that runs in time 2Õ(
√
d log3/2(1/ϵ)) · sf time and outputs a monotone function g such

that ||f − g||1 ≤ 2α+4ϵ. The size of the representation of g is 2Õ(
√
d log3/2(1/ϵ)) · sf . The algorithm

uses a random seed of length 2Õ(
√
d log(1/ϵ)) and succeeds with probability 1− 2−10d.

The proof of Corollary 13 is deferred to Section 5.6.6.

5.5 Analysis of the matching algorithm

In this section we give an algorithm for generating a succinct representation of a matching over
the violated pairs of the hypercube whose weight is a constant factor of the distance to monotonic-
ity. The core of the algorithm is an LCA for finding such a matching over the violated pairs of an
arbitrary poset.

Lemma 28 (Equivalence of distance to monotonicity and maximum-weight matching). Let W be
the total weight of the maximum-weight matching of the violation graph of f . Then dist1(f,mono) =
W/N .

Proof. This proof is analogous to the proof of Lemma 3.1 of [BRY14a]; see Section 5.6.7.

5.5.1 Details and correctness of MATCHVIOLATIONS

The algorithm MATCHVIOLATIONS given in Section 5.3 makes calls to an algorithm called
FILTEREDGES, which removes vertices that have already been matched or are not incident to any
heavy edges. We give the pseudocode for FILTEREDGES here.

Algorithm 21: LCA: FILTEREDGES(P, f, t,M, x)

1: Given: Poset P , function f : P → [−1, 1], and matching M given as succinct
representations, weight threshold t, vertex x

2: Output: All neighbors of x in the graph of violation score ≥ t and not in M
3:
4: return

{y ∈ P (x) |M(y) = ⊥ and
[(x < y and f(x) ≥ f(y) + t) or

(x > y and f(x) ≤ f(y)− t)]}

Lemma 29. Let P be a poset withN vertices, and let ∆ be an upper bound on the number of prede-
cessors and successors of any vertex in P . Then the output of the LCA MATCHVIOLATIONS(P, f, ϵ, r)
with a random seed r of length poly(∆, logN), is a matching of weight at leastN(1

4
dist1(f,mono)−

ϵ) with probability at least 1−N−10.

193

Proof. This is a small modification to the standard greedy algorithm for high-weight matching;
see Section 5.6.7.

Lemma 30 (Running time and output size). Let P, f, ϵ, N,∆, and r be as described in the lemma
above. Let sP be the size of the succinct representation of P , and sf be the size of the succinct
representation of f .

Then MATCHVIOLATIONS(P, f, ϵ, r) runs in time (∆ logN)O(log(1/ϵ))(sP + sf) and outputs a
representation of size (∆ logN)O(log(1/ϵ))(sP + sf).

Proof. If ϵ < 1/N , then MATCHVIOLATIONS constructs and outputs a representation of the stan-
dard global greedy algorithm for 2-approximate maximum matching. The representation size of
this algorithm is O(∆N) ≤ (∆ logN)O(log(1/ϵ)), and the running time of MATCHVIOLATIONS is
polynomial in this representation size.

If ϵ ≥ 1/N , then by induction on the number of iterations i, we will show that the representation
size of M at the start of iteration i is at most (∆ logN)O(i)(sP + sf). In the base case, we have an
empty matching M which has constant representation size.

In the inductive case, suppose the claim holds at the start of iteration i. Then we set P ′ to be
the function that applies FILTEREDGES to TC(P). TC(P) has size O(∆ · sP), as it makes O(∆)
calls to P . FILTEREDGES makes one call to TC(P) and at most O(∆) calls to M and f . It also
has overhead of size O(log t) = O(log(1/ϵ)) = O(logN). By the inductive hypothesis, the size
of P ′ is then

O(∆) · (∆ logN)O(i)(sP + sf) +O(logN) +O(∆ · sP)
≤ (∆ logN)O(i+1)(sP + sf).

Then we set M to be the function that applies GHAFFARIMATCHING to P ′. GHAFFARI-
MATCHING has constant overhead and makes poly(∆, logN) queries to P ′. Then the new size of
M is poly(∆, logN) · (∆ logN)O(i)(sP + sf) = (∆ logN)O(i+1)(sP + sf).

The size bounds follow from the fact that there are O(log 1/ϵ) iterations. The corresponding
running time bound for MATCHVIOLATIONS comes from the fact that since it only constructs
the succinct representations, its running time in each iteration is polynomial in the size of the
representations it constructs.

Lemma 31. With a random seed of length 2Õ(
√
d log(1/ϵ)), Algorithm 22 outputs a representation of

a matching on the weighted violation graph viol(f), of weight at least 2d · (1
4
dist1(f,mono)− 4ϵ),

with probability at least 1− 2−10d. The size of the representation is 2Õ(
√
d log(1/ϵ)) · sf , where sf is

the size of the representation of f .

Proof. HYPERCUBEMATCHING calls MATCHVIOLATIONS on the truncated hypercube, which
has parameters N < 2d and ∆ = 2O(

√
d log d log(1/ϵ)). The size of the representation of TRUNCAT-

EDCUBE is O(d). So by Lemma 30, the running time and output size of HYPERCUBEMATCHING

are 2O(
√
d log d log(1/ϵ)) · sf , and the random seed length is 2O(

√
d log d log(1/ϵ)).

194

Algorithm 22: HYPERCUBEMATCHING(f, ϵ, r)

1: Given: Function f : {−1, 1}d → [−1, 1] given as succinct representation, weight threshold
ϵ, random seed r = r1 ◦ . . . ◦ r⌈log 2/ϵ⌉

2: Output: Succinct representation of a high-weight matching on the violating pairs w.r.t. f
3: P ← TRUNCATEDCUBE(d, ϵ)
4: M ← representation of a function that takes x and outputs{

MATCHVIOLATIONS(P, f, ϵ, r) −
√
2d log 2/ϵ ≤ |x| ≤

√
2d log 2/ϵ

⊥ otherwise
5:
6: return M

Let f ′ be the restriction of f to the truncated cube. Since f is bounded in [−1, 1] and the
truncated cube covers all but an ϵ fraction of vertices, we have dist1(f ′,mono) ≥ dist1(f,mono)−
2ϵ. By Lemma 29, the weight of the matching is at least (1 − ϵ) · 2d(1

4
dist1(f

′,mono) − ϵ) ≥
(1− ϵ) · 2d(1

4
dist1(f,mono)− 3ϵ/2) ≥ 2d(1

4
dist1(f,mono)− 4ϵ).

5.6 Analysis of the agnostic learning algorithm

By inspecting algorithm MONOTONELEARNER (i.e. Algorithm 15 on page 187), we see im-
mediately that the run-time is 2Õ(

√
d/ϵ). We proceed to argue that the algorithm indeed satisfies the

guarantee of Theorem 32. First, we will need the following standard proposition.

Claim 10. For any positive integers d and s, real ϵ, δ ∈ (0, 1), and any function f : {±1}d →
[−1, 1], let T be a collection of at least d5s · 100

ϵ2
ln 1

ϵ
ln 1

δ
i.i.d. uniformly random elements of {±1}d.

Then, with probability at least 1− δ

max
degree-s polynomial P

with ∥P∥2 ≤1

∣∣∣∥f − P∥1 − E
x∼T

[|f(x)− P (x)|]
∣∣∣ ≤ ϵ,

Proof. See Section 5.6.8 for the proof of this proposition.

Now, in the following lemma we prove that subroutine Oracleα,d,ϵ(P) (i.e. Algorithm 16 on
page 188) satisfies some precise specifications with high probability. Informally, we show that
Oracleα,d,ϵ(P) either

• Certifies that the polynomial P is both close to monotone in L1 distance and has L1 predic-
tion error of α +O(ϵ).

• Outputs a hyperplane separating P from all such polynomials.

Formally, we prove the following:

195

Lemma 32. For sufficiently large constant C in Line 4 and Line 6 of procedure Oracleα,d,ϵ(P),
sufficiently large integer d, any function f : {−1, 1}d → {−1, 1}, parameters ϵ, α ∈ (0, 1), and
a degree-

⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomial P satisfying ∥P∥2 ≤ 1 the following is true. The procedure

Oracleα,d,ϵ(P) runs in time dÕ
(√

d
ϵ

)
and will with probability at least 1 − 1

25d
conform to the fol-

lowing specification:

1. If Oracleα,d,ϵ(P) outputs “yes”, then:

(a) The function PTRIMMED =


1 if P (x) > 1,

−1 if P (x) < −1,
P (x) otherwise.

is 100ϵ-close to monotone in L1 norm.

(b) The L1 distance between P and the function f is at most α + 100ϵ.

2. If Oracleα,d,ϵ(P) instead outputs (”No”, Qseparator), where Qseparator is a degree-
⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomial over Rd, then we have ⟨P ′, Qseparator⟩ < ⟨P,Qseparator⟩ for any degree-

⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomial P ′ with ∥P ′∥2 ≤ 1 that satisfies the following two conditions:

• P ′ is ϵ-close in L1 distance to some monotone function fmonotone : {±1}d → [−1, 1] and

• P ′ is (α + ϵ)-close in L1 distance to the function f which we are trying to learn.

In particular, this implies that if P itself is ϵ-close in L1 distance to some monotone function and is
(α + ϵ)-close in L1 distance to the function f , then Oracleα,d,ϵ(P) will say “yes” with probability
at least 1− 1

210d
.

Proof. We use the union bound to conclude that with probability at least 1− 1
25d

all the following
events hold:

(a) The LCA from Lemma 31 works as advertised and the weight W of the resulting matching
satisfies

W

2d
≥ 0.1 dist1(PTRIMMED,mono)− ϵ.

Another way to write the same thing is

⟨Mseparator, PTRIMMED⟩ ≥ 0.1 dist1(PTRIMMED,mono)− ϵ. (5.2)

From Lemma 31 it follows that this holds with probability at least 1− 1
210d

.

(b) The estimate of ⟨Mseparator, PTRIMMED⟩ in Line 7 is indeed ϵ-close to the true value. From the
standard Hoeffding bound, this holds with probability at least 1− 1

210n
.

196

(c) It is the case that ∥∥∥∥∥∥∥∥∥∥
∑

S⊂[d]:

|S|≤
⌈
4·
√

d
ϵ

log 4
ϵ

⌉
M̂separator(S)χS −Qseparator

∥∥∥∥∥∥∥∥∥∥
2

≤ ϵ

Substituting the expression for Qseparator, and using the orthogonality of {χS} we see this is equiv-
alent to ∑

S⊂[n]: |S|≤
⌈
4·
√

n
ϵ

log 4
ϵ

⌉ (
M̂separator(S)−

1

|T |
∑
x∈T

[Mseparator(x) · χS(x)]

)2

︸ ︷︷ ︸
≤ ϵd

−
⌈
4·

√
d

ϵ
log 4

ϵ

⌉
in absolute value w.p. ≥ 1

210d
via Hoeffding’s bound

≤ ϵ

Overall, the above holds with probability at least 1 − 1
29d

by taking a Hoeffding bound for each
individual summand and taking a union bound over them.

(d) The set T ⊂ {±1}d is such that

max
degree-

⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomial P ′ over {±1}dwith ∥P ′∥2 ≤1

∣∣∥f − P ′∥1 − E(x,f(x))∼T [|f(x)− P ′(x)|]
∣∣ ≤ ϵ.

It follows from Claim 11 that this happens with probability at least to 1− 1
210d

.
Now, we argue that if these conditions indeed hold, then Oracleα,d,ϵ(P) will satisfy the speci-

fication given.
First, suppose Oracleα,d,ϵ(P) answered “yes”. Then, since the estimate of ⟨Mseparator, PTRIMMED⟩

in Line 7 is within ϵ of its true value, we have

⟨Mseparator, PTRIMMED⟩ ≤ 6ϵ.

Now, since we are assuming the matching LCA from Lemma 31 works as advertised, this means
that

6ϵ ≥ ⟨Mseparator, PTRIMMED⟩
≥ 0.1 · dist1(PTRIMMED,mono)− ϵ

197

which can be rewritten as

dist1(PTRIMMED,mono) ≤ 70ϵ ≤ 100ϵ,

which is one of the two things we wanted to show. The other one was showing that the L1 distance
between P and the function f , which we are trying to learn, is at most α+100ϵ. Since the algorithm
returned “yes”, it has to be that in Line 11 we have

Ex∼T [|f(x)− P (x)|] ≤ α + 50ϵ.

From Section 5.6 it then follows that

∥f − P∥1 ≤ Ex∼T [|f(x)− P (x)|] + ϵ

≤ α + 51ϵ ≤ α + 100ϵ,

which is the other condition we wanted to show for the case when the oracle says “yes”.
Now, assume the oracle outputs “no” along with some polynomial Qseparator and let P ′ be a

degree
⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomial with ∥P ′∥2 ≤ 1 that satisfies the following two conditions12:

• P ′ is ϵ-close in L1 distance to some monotone function fmonotone : {±1}d → [−1, 1] and

• P ′ is (α + ϵ)-close in L1 distance to the function f which we are trying to learn.

Here, again, there are two cases. First, suppose we have the case where Qseparator is generated from
Mseparator. We have that the oracle’s estimate of ⟨Mseparator, PTRIMMED⟩ is at least 5ϵ, which means
that ⟨Mseparator, PTRIMMED⟩ ≥ 4ϵ. We know that P ′ is ϵ-close in L1 distance to some monotone
function fmonotone : {±1}d → [−1, 1]. Since Mseparator is defined to be so for every matched pair
(xi,yi) with xi ≺ yi we have Mseparator(xi) = 1 and Mseparator(yi) = −1 and is 0 otherwise, and
for each such pair fmonotone (xi) ≤ fmonotone (yi) we have ⟨Mseparator, fmonotone⟩ ≤ 0. This allows us
to conclude

0 ≥ ⟨Mseparator, fmonotone⟩
= ⟨Mseparator, P

′⟩+ ⟨Mseparator, fmonotone − P ′⟩ ≥
⟨Mseparator, P

′⟩

−
(

max
x∈{−1,1}n

|Mseparator(x)|
)
∥fmonotone − P ′∥1

≥ ⟨Mseparator, P
′⟩ − ϵ,

12If no polynomial satisfying these conditions exists, the statement we are seeking to prove holds vacuously.

198

which means

ϵ ≥ ⟨Mseparator, P
′⟩

=

〈 ∑
S⊂[n]

|S|≤
⌈
4·
√

n
ϵ

log 4
ϵ

⌉
M̂separator(S)

(∏
i∈S

xi

)
, P ′

〉

= ⟨Qseparator, P
′⟩−

−

∥∥∥∥∥∥∥∥∥∥
Q−

∑
S⊂[n]:

|S|≤
⌈
4·
√
n

ϵ
log 4

ϵ

⌉
M̂separator(S)

(∏
i∈S

xi

)∥∥∥∥∥∥∥∥∥∥
2

∥P ′∥2

≥ ⟨Qseparator, P
′⟩ − ϵ. (5.3)

On the other hand, the oracle’s estimate of ⟨Mseparator, PTRIMMED⟩ is at least 5ϵ, which means that it
is the case that ⟨Mseparator, PTRIMMED⟩ ≥ 4ϵ. This allows us to conclude

4ϵ ≤

Trimming the values of a function
only decreases weights of violated edges.︷ ︸︸ ︷

⟨Mseparator, PTRIMMED⟩ ≤ ⟨Mseparator, P ⟩

=

〈 ∑
S⊂[n]: |S|≤

⌈
4·
√
n

ϵ
log 4

ϵ

⌉ M̂separator(S)

(∏
i∈S

xi

)
, P

〉

≤ ⟨Qseparator, P ⟩+∥∥∥∥∥∥∥∥∥∥
Q−

∑
S⊂[n]:

|S|≤
⌈
4·
√
n

ϵ
log 4

ϵ

⌉
M̂separator(S)

(∏
i∈S

xi

)∥∥∥∥∥∥∥∥∥∥
2

∥P∥2

≥ ⟨Qseparator, P ⟩+ ϵ. (5.4)

Combining Equation 5.4 and Equation 5.3 we get

⟨Qseparator, P
′⟩ ≤ 2ϵ < 3ϵ ≤ ⟨Qseparator, P ⟩

as required.
Finally, we consider the case when Qseparator is generated on Line 12. Since P ′ is (α + ϵ)-close

199

in L1 distance to the function f , by Section 5.6 we have that

α + ϵ ≤ ∥f(x)− P ′(x)∥1
≤ E(x,f(x))∼T [|f(x)− P ′(x)|]− ϵ,

which we can rewrite as E(x,f(x))∼T [|f(x)− P ′(x)|] ≤ α + 2ϵ. At the same time, we have
E(x,f(x))∼T [|f(x)− P (x)|] > α+ 50ϵ, which means that

E
(x,f(x))∼T

[|f(x)− P (x)|] >

E(x,f(x))∼T [|f(x)− P ′(x)|] .

Therefore, as the function mapping a polynomial H to the value E(x,f(x))∼T [|f(x)−H(x)|] is
convex , it has to be the case that13

〈
P ′ − P,

∑
S⊂[n] :

|S|≤
⌈
4·
√
n

ϵ
log 4

ϵ

⌉
(

E
x∼T

[
P̂ (S)χS(x)·

· sign(P (x)− f(x))
])
χS

〉
=

〈
P ′ − P,∇H

(
E

(x,f(x))∼T
[|H(x)− f(x)|]

) ∣∣∣∣
H=P

〉
< 0.

This implies that ⟨Qseparator, P
′⟩ ≤ ⟨Qsepatator, P ⟩, which completes the proof.

5.6.1 Finishing the proof of the Main Theorem (Theorem 32).

Recall that earlier by inspecting Algorithm 15 we concluded that this algorithm runs in time

2
Õ
(√

d
ϵ

)
. Here we use Lemma 32 to finish the proof of Theorem 32 by showing that with probability

at least 1− 1
2d

the function sign(PGOOD
TRIMMED(x)− t∗) is monotone and is opt+O(ϵ)-close to f (where

opt is the distance of f to the closest monotone function).
We can further conclude that with probability at least 1− 1

23d
the following events hold:

1. Every time an oracle Oracleα,d,ϵ is invoked (for various values of α), its behavior will con-
form to the specifications in Lemma 32.

2. The algorithm HypercubeCorrector from Corollary 13 used on line 11 works as advertised,

13To be fully precise, the expression above is a subgradient of the convex function mapping a polynomial H to
E(x,f(x))∼T [|f(x)−H(x)|].

200

so the function PGOOD
CORRECTED : {±1} → [−1, 1] is monotone and we indeed have∥∥PGOOD

CORRECTED − PGOOD
TRIMMED

∥∥
1

≤ 10 · dist1(PGOOD
TRIMMED,mono) + ϵ. (5.5)

3. In step (4), the function sign(PGOOD
CORRECTED(x)− t∗) satisfies the guarantee from Fact 11, i.e.

Prx∼{±1}d
[
sign(PGOOD

CORRECTED(x)− t∗) ̸= f
]

≤ 1

2

∥∥PGOOD
CORRECTED − f

∥∥
1
+ ϵ (5.6)

We argue that each of these events takes place with probability at least 1− 1
24d

:

• Note that the oracles Oracleα,d,ϵ for various values of α are invoked at most 2Õ
(√

d
ϵ

)
times.

Therefore, Lemma 32 tells us that for each of this invocations the algorithm Oracleα,d,ϵ
conforms to its specification with probability at least 1 − 1

25n
. Via union bound we see that

event (1) holds with probability at least14 1− 1
24n

.

• Event (2) holds with probability at least 1− 1
24d

via Corollary 13.

• Event (3) holds with probability at least 1− 1
24d

via Fact 11

Via union bound, we see that with probability at least 1− 1
23d

all these events hold, which we will
assume for the rest of the proof.

Recall that opt stands for the distance of f to the closest monotone function. We first claim that
the algorithm will break out of the loop in Line 13 for some value α∗ ≤ 2opt + 150ϵ, which we
argue as follows: If α∗ > 2opt + 150ϵ, then for some15 α ∈ [2opt+100ϵ,2opt+150ϵ] the ellipsoid
algorithm failed to find some polynomial P on which Oracleα,n,ϵ returns “Yes”. We claim that this

is impossible. Indeed, let Cconvex be the set consisting of degree-
⌈
4·
√
n

ϵ
log 4

ϵ

⌉
polynomials P ′ with

∥P ′∥2 ≤ 1 that satisfies the following two conditions:

• P ′ is ϵ-close in L1 distance to some monotone function fmonotone : {±1}d → [−1, 1], and

• P ′ is (α + ϵ)-close in L1 distance to the function f which we are trying to learn.

We make the following observations:

14We assume that ϵ is such that 20.1d exceeds the number 2Õ
(√

d
ϵ

)
of times that Oracleα,d,ϵ is invoked (for different

values of α. Otherwise, the run-time budget is sufficient to store entire truth-tables of functions over {−1, 1}d and
statement in Algorithm 20 is achieved by the trivial algorithm that uses a linear program to fit the best montone
real-valued function and then rounds it to be {−1, 1}-valued. See Section 5.6.4 for further details.

15Note that opt ≤ 1/2, because the function f is at least 1/2-close to either the all-ones or all-zeroes functions,
which are both monotone. Therefore some value of α in the range [2opt+100ϵ,2opt+150ϵ] is necessarily considered
by the algorithm as it is trying all values α = ϵ, 2ϵ, 3ϵ, · · · 1− ϵ, 1 + 200ϵ.

201

• The set Cconvex is a convex set, because (a) the set of all monotone functions fmonotone :
{±1}d → [−1, 1] is convex, (b) the set of points (α + ϵ)-close in L1 distance to some spe-
cific convex set is itself convex, and (c) the intersection of two convex sets is a convex set (in
this case one convex set is the set functions {±1}n → [−1, 1] that are (α + ϵ)-close in L1

distance a monotone functions and the other convex set is is the set of all degree-
⌈
4·
√
d

ϵ
log 4

ϵ

⌉
polynomials with with ∥P ′∥2 ≤ 1).

• The set Cconvex contains an L2 ball of radius at least ϵ·n− 1
2

⌈
4·
√
n

ϵ
log 4

ϵ

⌉
. In other words, in Cconvex

there is some degree
⌈
4·
√
n

ϵ
log 4

ϵ

⌉
polynomial P0 such that any degree-

⌈
4·
√
n

ϵ
log 4

ϵ

⌉
polyno-

mial P ′ that is ϵ-close to P0 in L2 norm is also in Cconvex. Let fmonotone, optimal : {±1}n → {±1}
be the monotone function for which it is the case that Prx∼{±1}n [fmonotone, optimal(x) ̸= f(x)] =

opt, and let P0 be a degree-
⌈
4·
√
n

ϵ
log 4

ϵ

⌉
polynomial that is ϵ-close to fmonotone, optimal in L1

norm (such polynomial has to exist by Fact 7). Then, P0 is (2opt + ϵ)-close to f in L1 norm
and ϵ-close to monotone in L1 norm. In other words, the set Cconvex contains an L1-ball of
radius ϵ. Via the standard inequality between the L1 and L2 norms, in d dimensions every
L1 ball or radius ϵ contains an L2 ball of radius at most ϵ/

√
d. Our claim follows, since the

space of degree-
⌈
4·
√
n

ϵ
log 4

ϵ

⌉
over Rd has dimension at most n

⌈
4·
√
n

ϵ
log 4

ϵ

⌉
.

• Since the procedure Oracleα,d,ϵ is assumed to satisfy the specifications given in Lemma 32
and for this specific value of α it never gave the response “yes”, then for every query P to
Oracleα,d,ϵ, the oracle returned some halfspace that separates P from the convex set Cconvex.

From Fact 8 we know that under these conditions the ellipsoid algorithm will necessarily in time

poly
(
d

⌈
4·
√
d

ϵ
log 4

ϵ

⌉
, log (R/r)

)
= d

O
(⌈

4·
√
d

ϵ
log 4

ϵ

⌉)
find some polynomial P that is in Cconvex. For

this particular polynomial, the specifications in Lemma 32 require the oracle Oracleα,d,ϵ to give a
response “yes”, which gives us a contradiction. Thus, the function PGOOD

TRIMMED will be O(ϵ)-close
to monotone in L1 norm and will satisfy

∥∥PGOOD
TRIMMED − f

∥∥
1
≤ 2opt + O(ϵ). Combining this with

Equation (5.5) yields∥∥PGOOD
CORRECTED − f

∥∥
1
≤

2opt +O(ϵ) +
∥∥PGOOD

TRIMMED − PGOOD
CORRECTED

∥∥
1

= 2opt +O(ϵ).

We know that
∥∥PGOOD

TRIMMED − PGOOD
CORRECTED

∥∥
1
≤ O(ϵ) because PGOOD

TRIMMED is O(ϵ)-close to monotone
by Equation (5.5). Now, combining the inequality above with Equation 5.6 gives us

Prx∼{±1}n
[
sign(PGOOD

CORRECTED(x)− t∗) ̸= f
]
≤

1

2

∥∥PGOOD
CORRECTED − f

∥∥
1
+ ϵ ≤ opt +O(ϵ).

202

Finally, we see that since the function PGOOD
CORRECTED {±1}

d → [−1,+1] is monotone we have that the
{±1}-valued function sign(PGOOD

CORRECTED(x)− t∗) is also monotone, which finishes our argument.

5.6.2 Rounding of real-valued functions to Boolean.

Fact 11. Suppose we have two functions g : {±1}d → R and f : {±1}d → {±1}. Let
T be a set of at least 40

ϵ2
log
(
20
ϵδ
log 1

δ

)
i.i.d. uniformly random elements of {−1, 1}d, and let

ThresholdCandidates ⊂ [−1, 1] be a set of 20
ϵ
log 1

δ
i.i.d. uniformly random elements of [−1, 1].

Let
t∗ := argmin

t∈ThresholdCandidates

1

|T |
∑
x∈T

|sign(g(x)− t)− f(x)|

Then, with probability at least 1− δ it is the case that

Prx∼{±1}d [sign(g(x)− t∗) ̸= f] ≤ 1
2
∥f − g∥1 + ϵ

Proof. We get that

Et∼[−1,1]

[
Ex∼{±1}n [|sign(g(x)− t)− f(x)|]

]
≤ ∥f − g∥1

directly via linearity of expectation. Now, the random variable Ex∼{±1}d [|sign(g(x)− t)− f(x)|]
(with randomness taken over t) is always in [0, 2] and has some expectation E ∈ [0, 2] which is at
most ∥f − g∥1. By Markov’s inequality, we have

Pr
t∼[−1,1]

[E
x∼{±1}n

[|sign(g(x)− t)− g(x)|] ≥ E + ϵ/2]

≤ E

E + ϵ/2
≤ 2

2 + ϵ/2
≤ 1− ϵ

4
.

Since the set ThresholdCandidates consists of 20
ϵ
log 1

δ
i.i.d. uniform elements in [−1, 1], then

with probability 1 − δ or more, some t in ThresholdCandidates will satisfy the condition that
Ex∼{±1}d [|sign(g(x)− t)− g(x)|] is in [0, E + ϵ/2].

Finally, from the Hoeffding bound and union bound we observe that with probability at least
1− δ

2
it is the case that

max
t∈ThresholdCandidates

∣∣∣∣ 1|T |∑
x∈T

|sign(g(x)− t)− f(x)| −

Ex∼{−1,1}n |sign(g(x)− t)− f(x)|
∣∣∣∣ ≤ ϵ

4
.

203

Overall, we see that with probability at least 1− δ it is the case that

Prx∼{±1}n [sign(g(x)− t∗) ̸= f]

≤ 1

|T |
∑
x∈T

|sign(g(x)− t∗)− f(x)|+ ϵ

4

≤ 1
2
∥f − g∥1 + ϵ

This finishes the proof.

5.6.3 Agnostic learning algorithms handling randomized labels.

It is customary in the agnostic learning literature to consider a setting that is slightly more
general than the one in Theorem 32. Specifically, one is given pairs of i.i.d. elements {(xi, yi)}
from a distribution Dpairs, where the distribution of each xi by itself is uniform. The aim here is to
output an efficiently-evaluable succinct representation of a function g for which

Pr(x,y)∼Dpairs [g(x) ̸= y]

≤ min
monotonefmon:

{−1,1}n→{−1,1}

Pr(x,y)∼Dpairs [fmon(x) ̸= y] +O(ϵ). (5.7)

The only difference between this setting and the one in Theorem 32 is that here the label y doesn’t
have to be a function of example x; it is possible to receive the same example x twice accompanied
by different labels. Here we argue that Theorem 32 extends directly into this slightly more general
setting. Formally, we show that

Theorem 36. For all sufficiently large integers n the following holds. There is an algorithm that

runs in time 2
Õ
(√

d
ϵ

)
and given i.i.d. samples of pairs {(xi, yi)} from a distribution Dpairs, where

the marginal distribution over x is uniform, does the following. With probability at least 1 − 1
20.5d

the algorithm outputs a representation of a monotone function g : {±1}d → {±1} of size 2
Õ
(√

d
ϵ

)
that satisfies Equation (5.7).

5.6.4 Case 1: ϵ is very small.

We will consider two cases. First of all, suppose ϵ is so small that the run-time of the algorithm
in Theorem 32 exceeds 20.1d. In this case, the following algorithm runs in time poly(2d, 1/ϵ) and
outputs and efficiently-evaluable succinct representation of a function g for which Equation (5.7)
holds:

1. Draw two sets T1 and T2, each of 100d5 · 2d/ϵ2 example-label pairs from Dpairs.

2. For each x ∈ {−1, 1}n let h(x) be 1
|(xi,yi)∈T1 s.t.: xi=x|

∑
(xi,yi)∈T1 s.t. xi=x yi.

204

3. Via a size-2O(n) linear program, find the monotone function q : {−1, 1}d → [−1, 1] that is
closest to h is ℓ1 distance.

4. Output the function g defined so g(x) := sign(q(x)− t∗), where t∗ is obtained as in Fact 11
using the samples in T2.

The function g we output above with high probability satisfies Theorem 32 for the following rea-
son. First of all, via the standard coupon-collector argument with probability at least 1 − 1

25d
for

every x ∈ {−1, 1}n there will be at least 102/ϵ2 elements in (xi, yi) in T for which xi = x. Using
the Hoeffding bound and the union bound, we see that with probability at least 1− 1

22n
we have∣∣∣∣h(x)− E(x′,y′)∼Dpairs

[
y′
∣∣∣∣x′ = x

]∣∣∣∣ ≤ ϵ

2
. (5.8)

Now, from steps (3) and (4) we have

∥h− g∥1
2

≤ 1
2
dist1(h,mono) + ϵ. (5.9)

Therefore, we can combine Equation (5.8) and Equation (5.9) to obtain

Pr(x,y)∼Dpairs [g(x) ̸= y] ≤
min

monotonefmon:
{−1,1}n→{−1,1}

Pr(x,y)∼Dpairs [fmon(x) ̸= y] +O(ϵ), (5.10)

which finishes the proof for this case.

5.6.5 Case 2: ϵ is not too small.

Now, we proceed to the other case when ϵ is not too small and the algorithm in Theorem 32
runs in time at most 20.1n (and therefore uses at most 20.1d samples). In this case, we claim that
simply running the algorithm in Theorem 32 will give an efficiently evaluable succinct description
of a function g that satisfies the guarantee in Equation (5.7).

We now proceed to show that the guarantee in Equation (5.7) will indeed be achieved. Define
a random function frandom : {−1, 1}n → {−1, 1}, so for all x ∈ {−1, 1}n the value frandom(x) is
chosen independently such that frandom(x) = 1 with probability Pr(x′,y′)∼Dpairs [y

′ = 1 | x′ = x] and
frandom(x) = −1 with probability Pr(x′,y′)∼Dpairs [y

′ = −1 | x′ = x]. Consider the following two
scenarios:

• Scenario I: The samples {(xi,yi)} given to the algorithm from Theorem 32 are indeed i.i.d.
samples coming from Dpairs.

• Scenario II: The samples {(xi,yi)} given to the algorithm from Theorem 32 are sampled
as follows: (i) xi are i.i.d. uniform from {−1, 1}d (ii) yi = frandom(xi).

205

First we argue that in Scenario II with probability at least 1 − 2
2d

the function g given by the
algorithm from Theorem 32 satisfies Equation (5.7), (here the probability is over the choice of
frandom, choice of the samples, and the randomness of the algorithm itself). Indeed, let f ∗

mon be the
function that minimizes the right side of Equation (5.7). From the Hoeffding’s bound, it follows
that with probability at least16 1− 1

2d
over the choice of frandom it is the case that∣∣∣∣ Pr

x∼{−1,1}n
[frandom(x) ̸= f ∗

mon(x)]−

Pr
(x,y)∼Dpairs

[f ∗
mon(x) ̸= y]

∣∣∣∣ ≤ ϵ. (5.11)

Now, Theorem 32 implies that with probability at least 1− 1
2d

Pr
x∼{−1,1}n

[g(x) ̸= frandom(x)] ≤

dist0(frandom,mono) +O(ϵ) ≤
Pr

x∼{−1,1}n
[f ∗

mon(x) ̸= frandom(x)] +O(ϵ). (5.12)

Combining Equations 5.11 and 5.12 we we see that with probability at least 1− 2
2d

, the function g
given by the algorithm from Theorem 32 satisfies Equation (5.7) in Scenario II.

Finally, we argue that Equation (5.7) will be satisfied also in Scenario I with probability at
least 1 − 1

20.5d
for sufficiently large d. Conditioned on the absence of sample pairs (xi,yi) and

(xj,yj) with xi = xj , the distributions over samples in Scenario I and Scenario II are the same,
Hence it suffices to argue that the collision probability is low, given that the value of ϵ is such
that the algorithm from Theorem 32 uses at most 20.1d samples. By taking a union bound over all
pairs of samples, we bound the probability of such collision by 20.2d

2d
= 2−0.8n. Thus, information-

theoretically, any algorithm can distinguish between Scenario I and Scenario II with an advantage
of only at most 2−0.8d. In particular, this is true of the algorithm that checks whether Equation (5.7)
applies. Thus, indeed Equation (5.7) will be satisfied also in Scenario I with probability at least
1− 2

2d
− 1

20.8d
≥ 1− 1

20.5d
, which finishes the proof of Theorem 36.

5.6.6 Proofs deferred from Section 5.4

Proof of Lemma 25. Let x and y be comparable elements of P ; w.l.o.g. x ≺P y. It is sufficient to
show that f(x) > f(y) if and only if there is some i for which x ≺Pi

y and fi(x) > fi(y). We
claim that this i is the most significant bit in which f(x) and f(y) differ. It is certainly true that
f(x) > f(y) if and only if fi(x) > fi(y) for this i, and since fj(x) = fj(y) for all j < i by the
choice of i, we have x ≺Pi

y as well.
16Here we used that ϵ ≥ 1√

d poly log d
, because otherwise ϵ would be too small and we would be in the other case

when the run-time of the algorithm in Theorem 32 exceeds 20.1d. Also, we note that a much stronger bound can be
deduced from the Hoeffding bound, but we only need a bound of 1− 1

2d
.

206

Proof of Lemma 26. Since m is monotone, certainly m(x) ≤ m(y), and since f violates mono-
tonicity on this pair, certainly f(x) ≥ f(y) (and therefore g(y) ≥ g(x)). We will examine the
contribution of x and y to each of ||f −m||1 and ||g −m||1. We have the following cases:

• f(y) ≤ f(x) ≤ m(x) ≤ m(y): then

|m(x)− f(x)|+ |m(y)− f(y)|
=m(x) +m(y)− (f(x) + f(y))

=m(x) +m(y)− (g(x) + g(y))

=|m(x)− g(x)|+ |m(y)− g(y)|.

The distance of this pair does not change. The case of m(x) ≤ m(y) ≤ f(x) ≤ f(y) is
symmetric.

• f(y) ≤ m(x) ≤ m(y) ≤ f(x): then

|m(x)− f(x)|+ |m(y)− f(y)|
=(f(x)−m(x)) + (m(y)− f(y))
≥(f(x)−m(y)) + (m(x)− f(y))
=|g(y)−m(y)|+ |g(x)−m(x)|.

The distance of this pair does not increase. The case of m(x) ≤ f(y) ≤ f(x) ≤ m(y) is
symmetric.

• f(y) ≤ m(x) ≤ f(x) ≤ m(y): then

|m(x)− f(x)|+ |m(y)− f(y)|
=(f(x)−m(x)) + (m(y)− f(y))
≥(m(x)− f(y)) + (m(y)− f(x))
=|g(x)−m(x)|+ |g(y)−m(y)|.

The distance of this pair does not increase. The case of m(x) ≤ f(y) ≤ m(y) ≤ f(x) is
symmetric.

Proof of Corollary 13. Let f : {−1, 1}d → [−1, 1] be α-close to monotone in ℓ1 distance. We call
the algorithm HYPERCUBECORRECTOR(f, ϵ, r) with a random seed r of length 2O(

√
d log(1/ϵ) logn).

First we set the poset to be the truncated cube of width
√
2d log 2/ϵ, which is a poset such that every

element has at most 2O(
√

d log(1/ϵ) log d) predecessors and successors. The representation of this poset
(not its transitive closure) has size poly(d, log(1/ϵ)). Then we set f ′ to be a function that discretizes
f to 2/ϵ possible values. This representation has size O(sf/ϵ). Then we set f ′′ to be a function
that computes the Hamming weight of x, then either calls k-CORRECTOR or outputs a constant.

207

So its size is the size of the k-CORRECTOR representation times some overhead that is polynomial
in d and 1/ϵ. Since the ∆ parameter for the truncated cube is 2O(

√
d log(1/ϵ) log d), the h parameter

is O(
√
d), and the N parameter is < 2d, the worst-case running time and query complexity of this

instance of k-CORRECTOR is 2O(
√
d log d log3/2(1/ϵ)) by Lemma 27. Thus the representation size of the

k-CORRECTOR instance is 2Õ(
√
d log3/2(1/ϵ)), and so the representation size of f ′′ is 2Õ(

√
d log3/2(1/ϵ)) ·

sf . With the random seed of length 2O(
√

d log(1/ϵ) log d) = poly(∆ logN), k-CORRECTOR succeeds
with probability N−10 ≤ 2−10d.

5.6.7 Proofs deferred from Section 5.5

Proof of Lemma 28. The proof of dist1(f,mono) ≥ W/N is straightforward; for any edge (x, y),
x ≺ y in the matching, any monotone function must have g(y) ≥ g(x) and thus (f(x) − g(x)) +
(g(y)−f(y)) ≥ f(x)−f(y). So the contribution of x and y to the ℓ1 distance is at least the weight
of (x, y).

For the other direction, we give a proof exactly analogous to the max-weight matching char-
acterization of distance to the class of Lipschitz functions, presented in [BRY14a]. Let g be the
closest monotone function to f in ℓ1-distance. We will partition the vertices of the cube into three
classes: V> := {x | f(x) > g(x)}, V< := {x | f(x) < g(x)}, and V= := {x | f(x) = g(x)}. We
will duplicate the vertices of V= and group one copy with V> and one copy with V<, to form vertex
sets V≥ and V≤. The duplicated copies of x will be denoted x≥ and x≤. We define the bipartite
graph Bf,g to be the graph on V≥ × V≤ with an edge (x, y) if x ≺ y and g(x) = g(y). The weight
of the edge (x, y) is the same as it is in viol(f); it is just f(x) − f(y). Intuitively, a matching in
Bf,g will represent a set of edges along which some a minimal amount of label mass is transferred
to correct monotonicity. First, we claim that Bf,g has a matching which matches every vertex in
V> ∪ V<. This will follow from Hall’s marriage theorem if we can show that for every A ⊆ V> or
A ⊆ V<, we have |A| ≤ |N(A)|.

Suppose for contradiction that the marriage condition is false, and without loss of generality
let A be the largest subset of V> for which |A| > |N(A)|. We would like to claim that for any
x ∈ A ∪N(A) and y ̸∈ A ∪N(A), if x ≺ y then g(x) < g(y). We consider four possible cases:

a) If x ∈ A, y ∈ V>, x ≺ y, and g(x) = g(y), then y ∈ A as well, by the choice of A to be
the largest set that fails the marriage condition. This is because N(y) ⊆ N(x): any neighbor
z of y must have g(z) = g(y) = g(x), have x ≺ y ≺ z, and be in V≤, which makes it a
neighbor of x.

b) If x ∈ N(A), y ∈ V≤, x ≺ y, and g(x) = g(y), then g(y) = g(x) = g(z) and z ≺ x ≺ y for
some z ∈ A, so y ∈ N(A).

c) If x ∈ A, y ∈ V≤, x ≺ y, and g(x) = g(y), then y ∈ N(A).

d) If x ∈ N(A), y ∈ V>, x ≺ y, and g(x) = g(y), then g(y) = g(x) = g(z) and z ≺ x ≺ y for
some z ∈ A, so as in case (a) we have N(y) ⊆ N(z) and therefore y ∈ A.

208

We have shown that for any x ∈ A ∪ N(A) and y ̸∈ A ∪ N(A), if x ≺ y then g(x) < g(y).
Then there is some δ > 0 for which g(x) can be increased by δ for every x ∈ A ∪ N(A) without
breaking monotonicity. This decreases ||f − g||1 by δ(|A| − N(A)|) > 0, which contradicts the
assumption that g is the closest monotone function.

Having proven that Bf,g contains a matching M ′ on all vertices in V> ∪ V<, we will now show
that its weight is equal to N ||f − g||1, using the fact that g(x) = g(y) for all (x, y) ∈M ′:∑
(x,y)∈M ′

f(x)−f(y) =
∑

(x,y)∈M ′

f(x)− g(x)+ g(y)−f(y) =
∑

x∈V>∪V<

|f(x)− g(x)| = N ||f − g||1.

We will now find a matching M in viol(f) of equal weight. First replace each x≤ and x≥
with x, obtaining an edge set in viol(f) of equal weight that is not necessarily a matching, but
is a set of disjoint paths. We replace each path with the edge between its endpoints; i.e. if there
is some pair of edges (y, x≤) and (x≥, z), then we know that y ≺ x ≺ z and f(y) − f(z) =
((f(y) − f(x) + (f(x) − f(z)), so the matching edge (y, z) has weight equal to the total weight
of the path it replaces. Then M is a matching in viol(f) of weight equal to N ||f − g||1, which is
equal to N · dist1(f,mono).

Proof of Lemma 29. Fix the random seed r and assume all calls to the algorithm of [Gha22] using
r succeed. LetM ′ be a maximum-weight matching over viol(f), and letM be a matching returned
by MATCHVIOLATIONS. We will use M to refer to the matching and its succinct representation
interchangeably. For each edge e ∈ M ′, let we be the weight of e (i.e. the violation score of its
endpoints), and δe be the total weight of edges in M \M ′ that share an endpoint with e.

First we show by induction that at the start of each iteration i, M is maximal over the subgraph
of TC(P) induced by edges of weight greater than 2−(i−1). In the base case, M is initialized to
be the empty matching, which is maximal on the edges of weight > 2, as there are no such edges.
In the inductive case, we assume the invariant is still true at the start of iteration i. Then when
FILTEREDGES (Algorithm 21) is called in iteration i + 1, the vertices removed are exactly those
that are either already in M , or not incident to any edges of weight greater than t = 2−i. Then by
the maximality of the matching computed by GHAFFARIMATCHING on the filtered subgraph, any
edge not in that matching must satisfy one of the following criteria:

• it has weight at most 2−i,

• it has an endpoint in M ,

• it shares an endpoint with another edge in GHAFFARIMATCHING.

So after the new edges of in GHAFFARIMATCHING are added to M , M is maximal over the
2−i-heavy edges as desired.

Now we claim that δe ≥ we/2 for any edge e ∈ M ′ \M of weight at least ϵ. This is because
after the first round for which t < we, M ′ must be maximal over the t-heavy edges. This t is at

209

least we/2, so if e ̸∈ M , then either it shares an endpoint with some edge of weight at least we/2
or its own weight is ≤ ϵ. We then have

w(M ′) = w(M ∩M ′) +
∑

e∈M ′\M

we

≤ w(M ∩M ′) +
∑

e∈M ′\M

max(2δe, ϵ)

≤ w(M ∩M ′) + 2
∑

e∈M ′\M

δe + ϵN

We claim that
∑

e∈M ′\M ≤ 2 ·w(M \M ′). This is because each edge in M \M shares an endpoint
with at most 2 edges of M ′ \M , otherwise M ′ would not be a matching. Therefore,

w(M ′) ≤ w(M ∩M ′) + 4
∑

e∈M\M ′

we + ϵN

≤ 4 · w(M) + ϵN

By Lemma 28, w(M ′) = N · dist1(f,mono); therefore w(M) ≥ N(1
4
dist1(f,mono) − ϵ) as de-

sired.

We now bound the failure probability. When called with a random seed of length poly(logN, log log(1/ϵ))
the algorithm of [Gha22] can be made to succeed with probability 1 − (N−10/ log(4/ϵ)). We use
the random seed on at most log(4/ϵ) different graphs, so by union bound, with probability 1−N−10

all the calls succeed. By the same argument as in the proof of Theorem 33, we may assume that
log(1/ϵ) ≤ N , and so the randomness complexity is poly(∆, logN).

5.6.8 Proof of Claim 11.

Let us first recall the statement of the claim:

Claim 11. For any positive integers d and s, real ϵ, δ ∈ (0, 1), and any function f : {±1}d →
[−1, 1], let T be a collection of at least d5s · 100

ϵ2
ln 1

ϵ
ln 1

δ
i.i.d. uniformly random elements of {±1}d.

Then, with probability at least 1− δ

max
degree-s polynomial P

with ∥P∥2 ≤1

∣∣∣∥f − P∥1 − E
x∼T

[|f(x)− P (x)|]
∣∣∣ ≤ ϵ,

First we bound the probability that the condition above holds for one specific P with ∥P∥2 ≤ 1.
The condition ∥P∥2 ≤ 1 implies that maxx∈{±1}d |P (x)| ≤ ds. This implies, via the Hoeffding
bound, that

Pr
choice of T

[∣∣∣∥f − P∥1 − E
x∼T

[|f(x)− P (x)|]
∣∣∣ > ϵ

4

]
≤ exp

(
− ϵ

2

32

|T |
d2s

)
.

210

We now move on to bounding the maximum over all degree-d polynomials P over {±1}d
with ∥P∥2 ≤ 1. We will need a collection C of degree d polynomials over {±1}d, such that

|C| ≤ exp
(
dd ln 8dd

ϵ

)
so for every degree d polynomial P with ∥P∥2 ≤ 1 there is some element

Pclosest ∈ C for which it is the case that

max
x∈{±1}d

|P (x)− Pclosest(x)| ≤
ϵ

4
.

Also, the L2 norm of every element in C is at most 1. Such a set can be constructed by putting into
C all polynomials of the form

∑
S⊂[d]
|S|≤d

cS (χS(x)) with the coefficients cS taking values in [−1,+1]

rounded to the nearest multiple of ϵ
8ns , while discarding the polynomials whose L2 norm is larger

than 1. This way, since χS(x) ∈ {±1}, when we round the coefficients of P to a multiple of ϵ
8ds

the value at any x ∈ {±1}d cannot change by more than ϵ
4
, as there are at most ds contributing

monomials 17. The total number of such polynomials is at most
(
8ds

ϵ

)ds
= ed

s ln 8ns

ϵ .
Now, by taking a union bound on all elements of C we get

Pr
choice of T

[
max
P∈C

∣∣∣∣ ∥f − P∥1 − E
x∼T

[|f(x)− P (x)|]
∣∣∣∣ ≤ ϵ

2

]
≥ 1− exp

(
− ϵ

2

32

|T |
d2s

+ ds ln
8ds

ϵ

)
Finally, if the above holds, by choosing a polynomial Pclosest from C to minimize
maxx∈{±1}d |P (x)− Pclosest(x)| we get that

Prchoice of T

[
max

degree-s polynomial P over {±1}d
with ∥P∥2 ≤1

∣∣∣∣ ∥f − P∥1 − Ex∼T [|f(x)− P (x)|]
∣∣∣∣ ≤ ϵ

]
≥

1− exp

(
−ϵ

2

8

|T |
d2s

+ ds ln
4ds

ϵ

)
.

Substituting |T | ≥ d5s 100
ϵ2

ln 1
ϵ
ln 1

δ
we see that the above expression is at least 1− δ.

17To have ∥Pclosest(x)∥2 ≤ ∥P∥2 ≤ 1 we should round to the closest multiple of ϵ
8ds that is smaller in the absolute

value of the coefficient being rounded

211

Bibliography

[AAK+07] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and
Ning Xie. Testing k-wise and almost k-wise independence. Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June
11-13, 2007, pages 496–505, 2007.

[ABHU15] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Ruth Urner. Efficient
learning of linear separators under bounded noise. Proceedings of The 28th Confer-
ence on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, 40:167–190,
2015.

[ABHZ16] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang.
Learning and 1-bit compressed sensing under asymmetric noise. Proceedings of
the 29th Conference on Learning Theory, COLT 2016, New York, USA, June 23-26,
2016, 49:152–192, 2016.

[ABL14] Pranjal Awasthi, Maria-Florina Balcan, and Philip M. Long. The power of localiza-
tion for efficiently learning linear separators with noise. Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 449–
458, 2014.

[ACSL07] Nir Ailon, Bernard Chazelle, C. Seshadhri, and Ding Liu. Estimating the distance to
a monotone function. Random Structures & Algorithms, 31(3):371–383, 2007.

[ACSL08] Nir Ailon, Bernard Chazelle, C. Seshadhri, and Ding Liu. Property-Preserving Data
Reconstruction. Algorithmica, 51(2):160–182, 2008.

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence
versus k-wise independence. Inf. Process. Lett., 88(3):107–110, 2003.

[AJMR14] Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya Raskhodnikova. Limi-
tations of local filters of Lipschitz and monotone functions. ACM Transactions on
Computation Theory, 7(1), December 2014. Publisher: Association for Computing
Machinery (ACM).

[AL21] Rubi Arviv and Reut Levi. Improved LCAs for constructing spanners. CoRR,
abs/2105.04847, 2021.

212

[AM91] William Aiello and Milena Mihail. Learning the Fourier spectrum of probabilistic
lists and trees. Proceedings of the second annual ACM-SIAM symposium on Discrete
algorithms, pages 291–299, March 1991.

[AM06] Kazuyuki Amano and Akira Maruoka. On learning monotone Boolean functions
under the uniform distribution. Theor. Comput. Sci., 350(1):3–12, 2006.

[Ang88] Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, apr 1988.

[ARVX12a] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local com-
putation algorithms. Proceedings of the Twenty-Third Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
1132–1139, 2012.

[ARVX12b] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient Local Com-
putation Algorithms. Proceedings of the 2012 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1132–1139, January 2012.

[Baz09] Louay MJ Bazzi. Polylogarithmic independence can fool dnf formulas. SIAM Jour-
nal on Computing, 38(6):2220–2272, 2009.

[BB21] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonic-
ity. SIAM J. Comput., 50(3), 2021.

[BBL98] Avrim Blum, Carl Burch, and John Langford. On Learning Monotone Boolean Func-
tions. 39th Annual Symposium on Foundations of Computer Science, FOCS ’98,
November 8-11, 1998, Palo Alto, California, USA, pages 408–415, 1998.

[BBL06] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learn-
ing. Proceedings of the 23rd international conference on Machine learning, pages
65–72, 2006.

[BCK+07] John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man. Learning bounds for domain adaptation. Advances in neural information pro-
cessing systems, 20, 2007.

[BCO+15] Eric Blais, Clément L. Canonne, Igor C. Oliveira, Rocco A. Servedio, and Li-Yang
Tan. Learning circuits with few negations. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015,
August 24-26, 2015, Princeton, NJ, USA, 40:512–527, 2015.

[BCS18] Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d) · polylog n mono-
tonicity tester for boolean functions over the hypergrid [n]d. Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 2133–2151, 2018.

213

[BCS20] Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Domain reduction for
monotonicity testing: A o(d) tester for boolean functions in d-dimensions. Proceed-
ings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 1975–1994, 2020.

[BDBC+10] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. A theory of learning from different domains. Machine
learning, 79:151–175, 2010.

[BDBCP06] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of
representations for domain adaptation. Advances in neural information processing
systems, 19, 2006.

[BDU12] Shai Ben-David and Ruth Urner. On the hardness of domain adaptation and the util-
ity of unlabeled target samples. International Conference on Algorithmic Learning
Theory, 2012.

[BF86] Imre Bárány and Zoltán Füredi. Computing the volume is difficult. Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986,
Berkeley, California, USA, pages 442–447, 1986.

[BFF+01] Tugkan Batu, Lance Fortnow, Eldar Fischer, Ravi Kumar, Ronitt Rubinfeld, and
Patrick White. Testing random variables for independence and identity. 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 442–451, 2001.

[BFR+00] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing that distributions are close. 41st Annual Symposium on Foundations of Com-
puter Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA,
pages 259–269, 2000.

[BGJ+10] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung, Sofya Raskhod-
nikova, and David P. Woodruff. Lower bounds for local monotonicity reconstruction
from transitive-closure spanners. Approximation, Randomization, and Combinato-
rial Optimization, pages 448–461, 2010.

[BGJ+12] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and
David P. Woodruff. Transitive-Closure Spanners. SIAM J. Comput., 41(6):1380–
1425, 2012.

[BGR21] Sebastian Brandt, Christoph Grunau, and Václav Rozhon. The randomized local
computation complexity of the Lovász local lemma. CoRR, abs/2103.16251, 2021.

[BH21] Maria-Florina Balcan and Nika Haghtalab. Noise in classification. Beyond the Worst-
Case Analysis of Algorithms, page 361, 2021.

214

[BHV10] Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true
sample complexity of active learning. Machine learning, 80:111–139, 2010.

[Bir01] Lucien Birgé. An Alternative Point of View on Lepski’s Method. Lecture Notes-
Monograph Series, 36:113–133, 2001. Publisher: Institute of Mathematical Statis-
tics.

[BK21] Ainesh Bakshi and Pravesh K Kothari. List-decodable subspace recovery: Dimen-
sion independent error in polynomial time. Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1279–1297, 2021.

[BLMT22] Guy Blanc, Jane Lange, Ali Malik, and Li-Yang Tan. On the power of adaptivity in
statistical adversaries. Conference on Learning Theory, pages 5030–5061, 2022.

[BLQT22] Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly learning decision
trees in almost polynomial time. 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 920–929, 2022.

[BM97] Lucien Birgé and Pascal Massart. From model selection to adaptive estimation.
Festschrift for lucien le cam, pages 55–87, 1997.

[BNNR11] Khanh Do Ba, Huy L. Nguyen, Huy N. Nguyen, and Ronitt Rubinfeld. Sublinear
time algorithms for earth mover’s distance. Theory Comput. Syst., 48(2):428–442,
2011.

[BOW08] E. Blais, R. O’Donnell, and K. Wimmer. Polynomial regression under arbitrary
product distributions. Machine Learning, 2008.

[BRY14a] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. $L p$-testing. Pro-
ceedings of ACM Symposium on Theory of Computing (STOC), pages 164–173,
2014.

[BRY14b] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for test-
ing properties of functions over hypergrid domains. IEEE 29th Conference on Com-
putational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages
309–320, 2014.

[BT96] Nader H Bshouty and Christino Tamon. On the Fourier spectrum of monotone func-
tions. Journal of the ACM (JACM), 43(4):747–770, 1996. Publisher: ACM New
York, NY, USA.

[BZ17] Maria-Florina F Balcan and Hongyang Zhang. Sample and computationally efficient
learning algorithms under s-concave distributions. Advances in Neural Information
Processing Systems, 30, 2017.

[CAL94] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active
learning. Machine learning, 15:201–221, 1994.

215

[Can22] Clément Canonne. Topics and techniques in distribution testing: A biased but rep-
resentative sample. Foundations and Trends® in Communications and Information
Theory, 19(6):1032–1198, 2022.

[CDST15] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean Function
Monotonicity Testing Requires (Almost) n1/2 Non-adaptive Queries. Proceedings of
the forty-seventh annual ACM symposium on Theory of Computing, June 2015.

[CFG+19] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (∆+1) coloring in congested clique, massively parallel computation,
and centralized local computation. Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 -
August 2, 2019, pages 471–480, 2019.

[CGG+17] Clément L. Canonne, Elena Grigorescu, Siyao Guo, Akash Kumar, and Karl Wim-
mer. Testing k-monotonicity. 8th Innovations in Theoretical Computer Science Con-
ference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, 67:29:1–29:21, 2017.

[CGR13] Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and toler-
ant testers for connectivity and diameter. Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques - 16th International Workshop,
APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley, CA,
USA, August 21-23, 2013. Proceedings, 8096:411–424, 2013.

[CKKL12] Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, and Homin K. Lee. Submodular
Functions are Noise Stable. Proceedings of the 2012 Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1586–1592, January 2012.

[CM13] T Tony Cai and Zongming Ma. Optimal hypothesis testing for high dimensional
covariance matrices. Bernoulli, 19(5B):2359–2388, 2013.

[CS13a] Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean
functions over the hypercube. Proceedings of the forty-fifth annual ACM symposium
on Theory of Computing, June 2013.

[CS13b] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and
Lipschitz testing over hypercubes and hypergrids. Symposium on Theory of Com-
puting Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 419–428,
2013.

[CS13c] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity
testing over hypergrids. Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques - 16th International Workshop, APPROX 2013,
and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-
23, 2013. Proceedings, 8096:425–435, 2013.

216

[CS19] Deeparnab Chakrabarty and C. Seshadhri. Adaptive boolean monotonicity testing in
total influence time. 10th Innovations in Theoretical Computer Science Conference,
ITCS 2019, January 10-12, 2019, San Diego, California, USA, 124:20:1–20:7, 2019.

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New Algorithms and Lower Bounds
for Monotonicity Testing. 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, October 2014. ISSN: 0272-5428.

[CWX17] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower
bounds for testing monotonicity and unateness. Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, June 2017.

[Dan15] Amit Daniely. A PTAS for agnostically learning halfspaces. Proceedings of The
28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015,
40:484–502, 2015.

[Dan16] Amit Daniely. Complexity theoretic limitations on learning halfspaces. Proceedings
of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 105–117, 2016.

[DGJ+10] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and
Emanuele Viola. Bounded independence fools halfspaces. SIAM J. Comput.,
39(8):3441–3462, 2010.

[DGK+21] Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, John Peebles, and Eric Price.
Optimal testing of discrete distributions with high probability. STOC ’21: 53rd An-
nual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 542–555, 2021.

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana
Ron, and Alex Samorodnitsky. Improved Testing Algorithms for Monotonic-
ity. RANDOM-APPROX’99, Berkeley, CA, USA, August 8-11, 1999, Proceedings,
1671:97–108, 1999.

[DGPP16] Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Collision-based
testers are optimal for uniformity and closeness. Electron. Colloquium Comput.
Complex., page 178, 2016.

[DGT19] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. Distribution-
independent pac learning of halfspaces with massart noise. Advances in Neural
Information Processing Systems, 32, 2019.

[DHK+10] Ilias Diakonikolas, Prahladh Harsha, Adam Klivans, Raghu Meka, Prasad Raghaven-
dra, Rocco A. Servedio, and Li-Yang Tan. Bounding the average sensitivity and noise
sensitivity of polynomial threshold functions. Proceedings of the 42nd ACM sympo-
sium on Theory of computing - STOC ’10, page 533, 2010.

217

[DK22] Ilias Diakonikolas and Daniel Kane. Near-optimal statistical query hardness of learn-
ing halfspaces with massart noise. Conference on Learning Theory, pages 4258–
4282, 2022.

[DKK+21] Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, and Nikos
Zarifis. Agnostic Proper Learning of Halfspaces under Gaussian Marginals. Pro-
ceedings of Thirty Fourth Conference on Learning Theory, pages 1522–1551, July
2021. ISSN: 2640-3498.

[DKK+22] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos
Zarifis. Learning general halfspaces with general massart noise under the gaussian
distribution. Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, pages 874–885, 2022.

[DKK+23] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Sihan Liu, and Nikos Zarifis.
Efficient testable learning of halfspaces with adversarial label noise. arXiv preprint
arXiv:2303.05485, 2023.

[DKMR22] Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi, and Lisheng Ren. Cryptographic
hardness of learning halfspaces with massart noise. Advances in Neural Information
Processing Systems, 2022.

[DKPZ21] Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, and Nikos Zarifis. The opti-
mality of polynomial regression for agnostic learning under gaussian marginals in
the SQ model. Conference on Learning Theory, COLT 2021, 15-19 August 2021,
Boulder, Colorado, USA, 134:1552–1584, 2021.

[DKR23] Ilias Diakonikolas, Daniel M Kane, and Lisheng Ren. Near-optimal cryptographic
hardness of agnostically learning halfspaces and relu regression under gaussian
marginals. arXiv preprint arXiv:2302.06512, 2023.

[DKS18] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learning geometric con-
cepts with nasty noise. Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1061–1073, 2018.

[DKT21] Ilias Diakonikolas, Daniel Kane, and Christos Tzamos. Forster decomposition and
learning halfspaces with noise. Advances in Neural Information Processing Systems,
34:7732–7744, 2021.

[DKTZ20a] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning
halfspaces with massart noise under structured distributions. Conference on Learning
Theory, pages 1486–1513, 2020.

[DKTZ20b] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Non-
convex SGD learns halfspaces with adversarial label noise. Advances in Neural
Information Processing Systems, 33:18540–18549, 2020.

218

[DKTZ22] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning
general halfspaces with adversarial label noise via online gradient descent. Interna-
tional Conference on Machine Learning, pages 5118–5141, 2022.

[DKZ20] Ilias Diakonikolas, Daniel Kane, and Nikos Zarifis. Near-optimal SQ lower bounds
for agnostically learning halfspaces and relus under gaussian marginals. Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[DLLP10] Shai Ben David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for
domain adaptation. Proceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics, pages 129–136, 2010.

[DSFT+14] Dana Dachman-Soled, Vitaly Feldman, Li-Yang Tan, Andrew Wan, and Karl Wim-
mer. Approximate resilience, monotonicity, and the complexity of agnostic learning.
Proceedings, pages 498–511. Society for Industrial and Applied Mathematics, De-
cember 2014.

[DTK22] Ilias Diakonikolas, Christos Tzamos, and Daniel M Kane. A strongly polynomial al-
gorithm for approximate forster transforms and its application to halfspace learning.
arXiv preprint arXiv:2212.03008, 2022.

[Ele86] György Elekes. A geometric inequality and the complexity of computing volume.
Discret. Comput. Geom., 1:289–292, 1986.

[ELMR21] Guy Even, Reut Levi, Moti Medina, and Adi Rosén. Sublinear Random Access
Generators for Preferential Attachment Graphs. ACM Trans. Algorithms, 17(4):28:1–
28:26, 2021.

[EMR14] Guy Even, Moti Medina, and Dana Ron. Best of Two Local Models: Local Central-
ized and Local Distributed Algorithms. CoRR, abs/1402.3796, 2014.

[EYW12] Ran El-Yaniv and Yair Wiener. Active learning via perfect selective classification.
Journal of Machine Learning Research, 13(2), 2012.

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.
New results for learning noisy parities and halfspaces. 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley,
California, USA, Proceedings, pages 563–574, 2006.

[FJS91] Merrick L. Furst, Jeffrey C. Jackson, and Sean W. Smith. Improved learning of AC0

functions. Proceedings of the fourth annual workshop on Computational learning
theory, pages 317–325, August 1991.

[FK15] Vitaly Feldman and Pravesh Kothari. Agnostic learning of disjunctions on symmetric
distributions. The Journal of Machine Learning Research, 16(1):3455–3467, January
2015.

219

[FKP+19] Noah Fleming, Pravesh Kothari, Toniann Pitassi, et al. Semialgebraic proofs and effi-
cient algorithm design. Foundations and Trends® in Theoretical Computer Science,
14(1-2):1–221, 2019.

[FKV17] Vitaly Feldman, Pravesh Kothari, and Jan Vondrák. Tight Bounds on $\ell 1$ Ap-
proximation and Learning of Self-Bounding Functions. International Conference on
Algorithmic Learning Theory, pages 540–559, October 2017. ISSN: 2640-3498.

[FV15] V. Feldman and J. Vondrák. Tight Bounds on Low-Degree Spectral Concentration of
Submodular and XOS Functions. 2015 IEEE 56th Annual Symposium on Founda-
tions of Computer Science, pages 923–942, October 2015. ISSN: 0272-5428.

[GGK20] Surbhi Goel, Aravind Gollakota, and Adam R. Klivans. Statistical-query lower
bounds via functional gradients. Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnit-
sky. Testing Monotonicity. Combinatorica, 20(3):301–337, 2000.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and its Connec-
tion to Learning and Approximation. J. ACM, 45(4):653–750, 1998.

[Gha15] Mohsen Ghaffari. An Improved Distributed Algorithm for Maximal Independent Set.
arXiv:1506.05093 [cs], July 2015. arXiv: 1506.05093.

[Gha22] Mohsen Ghaffari. Local computation of maximal independent set. 2022 IEEE 62nd
Annual Symposium on Foundations of Computer Science, 2022.

[GHL+15] Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela. Non-local
probes do not help with graph problems. CoRR, abs/1512.05411, 2015.

[GKK23] Aravind Gollakota, Adam R. Klivans, and Pravesh K. Kothari. A moment-matching
approach to testable learning and a new characterization of rademacher complexity.
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, Orlando, FL, USA, June 20-23, 2023, pages 1657–1670, 2023.

[GKKM20] Shafi Goldwasser, Adam Tauman Kalai, Yael Kalai, and Omar Montasser. Beyond
perturbations: Learning guarantees with arbitrary adversarial test examples. Ad-
vances in Neural Information Processing Systems, 33:15859–15870, 2020.

[GKSV23] Aravind Gollakota, Adam R Klivans, Konstantinos Stavropoulos, and Arsen
Vasilyan. Tester-learners for halfspaces: Universal algorithms. 37th Conference
on Neural Information Processing Systems (NeurIPS 2023)., 2023.

220

[GKSV24] Aravind Gollakota, Adam R Klivans, Konstantinos Stavropoulos, and Arsen
Vasilyan. An efficient tester-learner for halfspaces. International Conference on
Learning Representations (to appear), 2024.

[GOWZ10] Parikshit Gopalan, Ryan O’Donnell, Yi Wu, and David Zuckerman. Fooling func-
tions of halfspaces under product distributions. 2010 IEEE 25th Annual Conference
on Computational Complexity, pages 223–234, 2010.

[GR00] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs.
Electron. Colloquium Comput. Complex., (20), 2000.

[GR06] Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces
with noise. 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
543–552, 2006.

[GR21] Jan Grebı́k and Václav Rozhon. Classification of local problems on paths from the
perspective of descriptive combinatorics. CoRR, abs/2103.14112, 2021.

[GRSY20] Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Inter-
active proofs for verifying machine learning. Electron. Colloquium Comput. Com-
plex., page 58, 2020.

[GS10] Parikshit Gopalan and Rocco A. Servedio. Learning and Lower Bounds for AC0 with
Threshold Gates. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 588–601, 2010.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifica-
tions in Massively Parallel Computation and Centralized Local Computation. Pro-
ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1636–1653,
2019.

[Han07] Steve Hanneke. A bound on the label complexity of agnostic active learning. Pro-
ceedings of the 24th international conference on Machine learning, pages 353–360,
2007.

[Han09] Steve Hanneke. Theoretical foundations of active learning. Carnegie Mellon Uni-
versity, 2009.

[Han11] Steve Hanneke. Rates of convergence in active learning. The Annals of Statistics,
pages 333–361, 2011.

[Han14] Steve Hanneke. Theory of disagreement-based active learning. Foundations and
Trends® in Machine Learning, 7(2-3):131–309, 2014.

221

[Hau92] David Haussler. Decision theoretic generalizations of the PAC model for neural net
and other learning applications. Inf. Comput., 100(1):78–150, 1992.

[HJLT96] Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning
decision lists and trees. Information and Computation, 126(2):114–122, 1996.

[HKM10] Prahladh Harsha, Adam Klivans, and Raghu Meka. An invariance principle for poly-
topes. Proceedings of the forty-second ACM symposium on Theory of computing,
pages 543–552, June 2010.

[HL13] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal
of the ACM (JACM), 60(6):1–39, 2013.

[JLSW11] Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and Andrew Wan. Learning
random monotone DNF. Discret. Appl. Math., 159(5):259–271, 2011.

[Kan10] D. M. Kane. The Gaussian Surface Area and Noise Sensitivity of Degree-d Polyno-
mial Threshold Functions. 2010 IEEE 25th Annual Conference on Computational
Complexity, pages 205–210, June 2010. ISSN: 1093-0159.

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Compu-
tational Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[KK21] Adam Tauman Kalai and Varun Kanade. Efficient learning with arbitrary covariate
shift. Algorithmic Learning Theory, pages 850–864, 2021.

[KKK19a] Sushrut Karmalkar, Adam Klivans, and Pravesh Kothari. List-decodable linear re-
gression. Advances in neural information processing systems, 32, 2019.

[KKK19b] Sushrut Karmalkar, Adam R. Klivans, and Pravesh Kothari. List-decodable linear
regression. Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 7423–7432, 2019.

[KKM12] Adam Tauman Kalai, Varun Kanade, and Yishay Mansour. Reliable agnostic learn-
ing. Journal of Computer and System Sciences, 78(5):1481–1495, 2012.

[KKMS08] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
Agnostically learning halfspaces. SIAM J. Comput., 37(6):1777–1805, 2008.

[KLS95] Ravi Kannan, László Lovász, and Miklós Simonovits. Isoperimetric problems for
convex bodies and a localization lemma. Discrete & Computational Geometry,
13:541–559, 1995.

[KLS09] Adam R. Klivans, Philip M. Long, and Rocco A. Servedio. Learning halfspaces
with malicious noise. Automata, Languages and Programming, 36th International
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I,
5555:609–621, 2009.

222

[KMS15] Subhash Khot, Dor Minzer, and Muli Safra. On Monotonicity Testing and Boolean
Isoperimetric Type Theorems. 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, October 2015. ISSN: 0272-5428.

[KOS02] A. R. Klivans, R. O’Donnell, and R. A. Servedio. Learning intersections and thresh-
olds of halfspaces. The 43rd Annual IEEE Symposium on Foundations of Computer
Science, 2002. Proceedings., pages 177–186, November 2002. ISSN: 0272-5428.

[KOS08] Adam R. Klivans, Ryan O’Donnell, and Rocco A. Servedio. Learning geometric
concepts via gaussian surface area. 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages
541–550, 2008.

[KS88] Wieslaw Krakowiak and Jerzy Szulga. Hypercontraction principle and random mul-
tilinear forms. Probability Theory and Related Fields, 77(3):325–342, 1988.

[KS17] Pravesh K Kothari and Jacob Steinhardt. Better agnostic clustering via relaxed tensor
norms. arXiv preprint arXiv:1711.07465, 2017.

[KSS94a] Michael J. Kearns, Robert E. Schapire, and Linda Sellie. Toward efficient agnostic
learning. Mach. Learn., 17(2-3):115–141, 1994.

[KSS94b] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2):115–141, 1994.

[KSV23] Adam R Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Testable learning
with distribution shift. Submitted to ArXiv, 2023.

[KV89] Michael J. Kearns and Leslie G. Valiant. Cryptographic Limitations on Learning
Boolean Formulae and Finite Automata. Proceedings of the 21st Annual ACM Sym-
posium on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA, pages
433–444, 1989.

[Las01] Jean B Lasserre. New positive semidefinite relaxations for nonconvex quadratic pro-
grams. Advances in Convex Analysis and Global Optimization: Honoring the Mem-
ory of C. Caratheodory (1873–1950), pages 319–331, 2001.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

[LRR20] Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local Algorithms for Sparse Spanning
Graphs. Algorithmica, 82(4):747–786, 2020.

[LRV22] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly learning monotone func-
tions via local correction. 63rd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2022, pages 75–86, 2022.

223

[LRY17] Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local Computation Algorithms
for Graphs of Non-constant Degrees. Algorithmica, 77(4):971–994, 2017.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method
and its implications for combinatorial and convex optimization. 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, pages 1049–1065, 2015.

[LV07] László Lovász and Santosh Vempala. The geometry of logconcave functions and
sampling algorithms. Random Structures & Algorithms, 30(3):307–358, 2007.

[LV18] Yin Tat Lee and Santosh S Vempala. The Kannan-Lovász-Simonovits conjecture.
arXiv preprint arXiv:1807.03465, 2018.

[LV23] Jane Lange and Arsen Vasilyan. Agnostic proper learning of monotone functions:
beyond the black-box correction barrier. in 64rd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2023. Invited to special issue, 2023.

[Man92] Yishay Mansour. An O(nlog log n) learning algorithm for DNF under the uniform distri-
bution. Proceedings of the fifth annual workshop on Computational learning theory,
pages 53–61, July 1992.

[MMR09] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation:
Learning bounds and algorithms. Proceedings of The 22nd Annual Conference on
Learning Theory (COLT 2009), 2009.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-
chine learning. MIT press, 2018.

[Nes00] Yurii Nesterov. Squared functional systems and optimization problems. High per-
formance optimization, pages 405–440, 2000.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[OS03] Ryan O’Donnell and Rocco A Servedio. New degree bounds for polynomial thresh-
old functions. Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 325–334, 2003.

[OS06] R. O’Donnell and R. A. Servedio. Learning monotone decision trees in polynomial
time. 21st Annual IEEE Conference on Computational Complexity (CCC’06), pages
13 pp.–225, July 2006. ISSN: 1093-0159.

[OW09] Ryan O’Donnell and Karl Wimmer. KKL, Kruskal-Katona, and Monotone Nets.
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
October 25-27, 2009, Atlanta, Georgia, USA, pages 725–734, 2009.

224

[OZ18] Ryan O’Donnell and Yu Zhao. On closeness to k-wise uniformity. Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, 116:54:1–54:19,
2018.

[Pan08] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Trans. Inf. Theory, 54(10):4750–4755, 2008.

[Par00] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. California Institute of Technology, 2000.

[PRR04] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and dis-
tance approximation. Electron. Colloquium Comput. Complex., 2004.

[PRVY19] Merav Parter, Ronitt Rubinfeld, Ali Vakilian, and Anak Yodpinyanee. Local com-
putation algorithms for spanners. 10th Innovations in Theoretical Computer Sci-
ence Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA,
124:58:1–58:21, 2019.

[PRW22] Ramesh Krishnan S Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approx-
imating the distance to monotonicity of Boolean functions. Random Structures &
Algorithms, 60(2):233–260, 2022. Publisher: Wiley Online Library.

[Riv87] Ronald L. Rivest. Learning decision lists. Mach. Learn., 2(3):229–246, 1987.

[RMH+20] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younès Ben-
nani. A survey on domain adaptation theory: learning bounds and theoretical guar-
antees. arXiv preprint arXiv:2004.11829, 2020.

[RTVX11a] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algo-
rithms. ICS, 2011.

[RTVX11b] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast Local Computation
Algorithms. ICS, 2011.

[RV16] Omer Reingold and Shai Vardi. New techniques and tighter bounds for local compu-
tation algorithms. J. Comput. Syst. Sci., 82(7):1180–1200, 2016.

[RV23] Ronitt Rubinfeld and Arsen Vasilyan. Testing distributional assumptions of learning
algorithms. Proceedings of the 55th Annual ACM Symposium on Theory of Comput-
ing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1643–1656, 2023.

[RY20] Prasad Raghavendra and Morris Yau. List decodable learning via sum of squares.
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 161–180, 2020.

225

[Sho87] N.Z. Shor. Quadratic optimization problems. Izv. Akad. Nauk SSSR Tekhn. Kibernet.,
1987(1):128–139, 222, 1987.

[SS10a] Michael Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM J. Com-
put., 39:2897–2926, 01 2010.

[SS10b] Michael Saks and C. Seshadhri. Local Monotonicity Reconstruction. SIAM J. Com-
put., 39:2897–2926, January 2010.

[SW14] Adrien Saumard and Jon A Wellner. Log-concavity and strong log-concavity: a
review. Statistics surveys, 8:45, 2014.

[TCK+22] Niels K Ternov, Anders N Christensen, Peter JT Kampen, Gustav Als, Tine Vester-
gaard, Lars Konge, Martin Tolsgaard, Lisbet R Hölmich, Pascale Guitera, Annette H
Chakera, et al. Generalizability and usefulness of artificial intelligence for skin can-
cer diagnostics: An algorithm validation study. JEADV Clinical Practice, 1(4):344–
354, 2022.

[Tre19] Lloyd N Trefethen. Approximation Theory and Approximation Practice, Extended
Edition. SIAM, 2019.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applications
in data science, volume 47. Cambridge university press, 2018.

[Wim10] K. Wimmer. Agnostically Learning under Permutation Invariant Distributions. 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, pages 113–122,
October 2010. ISSN: 0272-5428.

[WOD+21] Andrew Wong, Erkin Otles, John P Donnelly, Andrew Krumm, Jeffrey McCullough,
Olivia DeTroyer-Cooley, Justin Pestrue, Marie Phillips, Judy Konye, Carleen Penoza,
et al. External validation of a widely implemented proprietary sepsis prediction
model in hospitalized patients. JAMA Internal Medicine, 181(8):1065–1070, 2021.

[Wol07] Paweł Wolff. Hypercontractivity of simple random variables. Studia Mathematica,
3(180):219–236, 2007.

[YBC13] Liu Yang, Avrim Blum, and Jaime Carbonell. Learnability of DNF with
representation-specific queries. Proceedings of the 4th Conference on Innovations
in Theoretical Computer Science, page 37–46, 2013.

[YZ17] Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and label-optimal
learning of halfspaces. Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 1056–1066, 2017.

226

[ZBL+18] John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph J Ti-
tano, and Eric Karl Oermann. Variable generalization performance of a deep learn-
ing model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS
medicine, 15(11):e1002683, 2018.

[Zha18] Chicheng Zhang. Efficient active learning of sparse halfspaces. Conference on
Learning Theory, pages 1856–1880, 2018.

[ZL21] Chicheng Zhang and Yinan Li. Improved algorithms for efficient active learning
halfspaces with massart and tsybakov noise. Conference on Learning Theory, pages
4526–4527, 2021.

[ZSA20] Chicheng Zhang, Jie Shen, and Pranjal Awasthi. Efficient active learning of sparse
halfspaces with arbitrary bounded noise. Advances in Neural Information Processing
Systems, 33:7184–7197, 2020.

227

